UNCLASSIFIED

AD NUMBER

AD251192

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution: Further dissemination only
as directed by US Army Research and
Development Labs, Corps of Engineers, Fort
Belvoir, VA, Nov 1960; or higher DoD
authority.

AUTHORITY

USA AMSTA-AR-WEL-TL PA, per DTIC Form 55,
dtd 6 Feb 2002

THIS PAGE IS UNCLASSIFIED




UNCLASSIFIED

0 251197 |

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

\




NOTICE: Wwhen govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the saild drawings, specifications, or other
date 1s not to be regarded by implication or other-
wise as in any manmner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any wey be related
thereto.




b
~~~~~~

k b Yer oD thwz 2234ToSSEseR. .
This rersTt IS fmtanded for ths use CNlY To L0 Guedew )
-dh1s roTL 15 IIeTalh ; ST e /
4 - - - . - > ade JRalel a
Keitnor it nmo- auvr cf ito contonts mar Yoo rnltiaca e ¥ ‘
- [SERIN] il :

Shor ¢ ; VISR S:iies <3meut of Direcctor,

ot' r o"-':-.; .:af-c- :-:. CL . Der. piiwi Sl |
s . S 2.

.'A- -l.L_- .

..- [e e

Physics

p E c Engineering

CORPORATION Chemistry

2030 17thsStreet . Boulder, Colorado . Hillcrest 2-6015

rINAL RZPORT

THEORETICAL STUDIES RELATING TO THE STRUCTURE
AND PROPERTIES OF LEAD AZIIES
BEFORE AND AFTER ENERGY INTERACTIONS

Covering the period
9 October 1959 to 9 November 1960

S

- .
é;; — Contract No. Da-LL-009-ENG-L15§ }\
-~
- Department of the Arm: o
——IC::i Project IMumber £-07-11-LL0 L
= < v\
< N \‘\1
O <

Report prepared for

U., . Army Research and Development Latoratories
Corps of zZngineers
Fort Belvoidr, Virginis

Submitted by Lo
P,E.C. CORPORATION |

10C1 iapleton Avenue = fxi: <.
Boulder, Colorado

Copy No. __ of ___

.¢"



£ 2
&y O
650,‘&(\‘{)\;:)_ N
o, 4
NN
VN,
Q%,Q%%
24
FINAL REPORT w8,
»?j(\ %b »
%%
%L
%.
%

THEORETICAL STUDIES RELATING TO THE STRUCTURE
AND PROFERTIES OF LEAD AZIDES
BEFORE AND AFTER ENERGY INTERACTIONS

Covering the period
S October 1959 to 9 November 1960

Contract No. DA-l-009-ENG~158

Department of the Army
Project Number 8-07-11-h}0

Report prepared for

U. S5, Army Research and Developmoewnt Laboratories
Corps of Englneers
Fort Belvolr, Virginia

Submitted by

P,E.C. CORPORATION.
1001 Mapleton Avenus
Boulder, Colorado

Copy Wo. // of _ )eoples.

‘ASTIA Availability Notice

All distribution of this report is controlled.
Qualifi=a ATTIZ wom: chiul’ r2gulst through

3 - . L T N K
rirectcr, U0 . oo, Nicpinia.

L e




PREFACE 4 %,

This 1s a final report submitted under Contract
DA-}}j-009+«ENG-}i158. This report supersedes all

quarterly reports submitted under this contract.
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SUMMARY

A probabllity theory is developed to describe the
initiation of detonation.

A new solid state reasction rate theory is presented.A
Some prsliminary appllications are made to drop-height
experiments.

Calculations are made to determine the theoretlcal
dielectric constant and loss tangent of a dielectrie
medium contalning impurities.

Conclusions snd recommendations are presented at

the end of sach chaptor.
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Chepter I N

MODEL FOR INITIATION Ut R,
sS}y 2 Sr 62 %&
D, S, Ling, Jr. dg Op

Introduction

In a previous reportl wo considered a simplified model
of the initlation process. For brsevity we will term thls

the "single-point" model. In thls report we continue the

development of this model.

Section I reviews briefly the basic ildeas of the model.
In Section IT the method of moments 1s applied to the fund-
amental differentlal equatlon of the model, Sect;on IIT
shows how the saddle point method (method of steeﬁest
descont) may be used to sclve the moment equations. Section
IV presents an improved solution of the dlfferential
equation. Thils Improved solution 1s still based on the
method of moments but permits one %o neglect higher moments
with much less error. The method of Section IV gives a
completely adequate solution of the differential equation
and thus constitutes a complete mathematical treatment of

the model. Sectlion V shows how the model may be made more

realistic while =st11l1l remaining a single-polnt model., The

methods of Sectlion V have been used in the actual numerical

1, First Quarterly Technical Report, Contract DA-llj-009-
ENG-4158, 9 October 1959 to 5 February 1960, prepared
by P.E.C. Corporation,



caleculations, Sectlion VI discusses the important question
of the actual probability of initiation of explosion as
predicted by the "single-point" modsl. Section VII
presents the results of some numerical calculations.
Sectlon VIIT presents some concluding remarks and makes

recommendations for future investigation.
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Sectlon 1. The "3ingle-roint" Modsl of Inltiation, Qby&a%bq;hg
et on L . =
;s . . <
The basic idea of the "siagle-polint" model is %o %

asgsume that condltlous are uailform over the very asmall
region of the sxplosive in which Initietilon occurs,
Becausge vreactlions are ovcurring, the small region is at
a higher temperature, 7, than the temperature To of the
surroundings . However, as wayg dliscuyged In greastey
detall in the sarlier report; ather than assipgn a4
definite Homperature T to thoe small hesated reglon, we
Intreduce a probablliity furetivn P(¥,%) for the reogion,
'bus P{P,5)dY 1s the probablitesy that at lme t the temp-
sratuve of the reglon Jles babtwean T and T+d7, Very
hriefly aotated, the wawson Tox thls approach is that whern
very small numbers of wmoleculos are Involved we cannot
propeirly speslt of the pumber o0i veactlions which oceur in
a time Lnterval but can only ntate the probabllity that a
reactlon occurs in sald time Interval., Thus at any time
we can never rrally say how many reactions have occurred
and therefore wa cannot know hew mach the temperature of
tho reglon has been ralsed. Rether. we can only state
the probabllity of a cevtain mumber of reactions and there-
ffore the probavility that the temperature has a certaln
valus,

The small region {the "single-point™ since conditions
are assumed t o be unifovm over the region) will lose heat

to the surroundings by thermal conduction at a rate given




v,
2,
+ 4%
228,
v, v
RaIEA
Ly K{r-3.3 . Tae censtaert £ cen be reiated %o the theremsl A2
A K (1)
)
condueii vl k. o the reglon (see sartloy report) with Q%S;%%
1))
y . e
the roaguldi %
0% B
IR

PV
S ?-'ﬁ}‘-!“/-"ka %%e\

D

with N = mamber of molecules in the small region \\igj
(3

. )

w2 orndive of bthe reglon ?

v themaal conduevivisy of the modlum
W and » wwr, of covwene, be related by Ilntroduclng the
volimae occupled by o single mclecula, In Sectlon V we

will introdvee o diiferent exprasasion for X, Thiles w1l not,

s

howawey, iyweilaese any ol vhe devolopment which fullows
In Saceltons 1, X0, (IT and 1V,
Reacéionn are nsgumed o seeuv 1n the small reglon

:

wlith o probatilivy peor voelds Hime glven by

o () = Npg B/

B Ja whe activatiou energy and A is the frequency facthor

of tha Awyhenius oquatlonn, N la the ruwmber of molecules

in the wroplan, k 1y Boltzmannty constant. I% will be
convnnient o measuye tomporature in energy units, thus

in all that follows T stands for k timos the temperature, If

we choege B itse’l asg an energy unilt and let U = NA then

we have the simpler cexpreoasion

p(T) = e~ 1/T




If sach ieactlon releases an amount of snergy Q
we w11l asswne this to be immsdiately distributed
uniformly over the entire reglon of the "single-polnt™.
This 1s clesarly a rather unrealistic sssumption but it
is necessary in order to preserve the "single-point”
nature of the model. 'Thls ensrgy: Q, will eause T to
increase by an amount "q". "q" 19 clearly related %o
Q. N and C, the apeciilc heat of the medium. The éxact
expresgion 3s gliven in Section V,

We wust now derive the equation satisgifled by
P(T,t). That 1s, we must show how %o get P(T,t+dh)
1f we know P{T,t). The following derivation is sxactly
that presentod in the earlier report but 1s developed
here in greator detall. What 1s the probabllity that at
time t+dv the temperature lles between T and T+AT? This
probabili y can cloarly arise Iin two ways,

1) The temperature at time t may lle between T=q
and (T-q)+AT. If now a reaciion occurs in tho
time dt, the temperature will be incrsased by
an smount q and thus at t+dt the temperature will
1is bs¥ween T and T+AT, The probability of this
event 1s clearly given by

[P(T-q,t)AT)p{(T=q) dt]

The first bracket gives the probabllity of

tampsraturs between T-g and T=gtAT at the time +,

4




The coced Doraekes glves tha probability taad
a rruclbicy oscurs in the time iuterwal dt IF
the Seaperatars io Teq. The product of thoao

faro probaniiitiss glves the probability of

The wesporabtore a5 time % may bs slightly
groaves than by fust enough so that in ta-
time iaberral OO vhe heat conduc tlon logs mstage
the teaprvattire dovn b0 T, Let 7' be the

Semaer where oy Bive b, Thea 1f the temperatwee

) ]

con o hoat eordnekion alons , 1% Ta elaar
it
o KT ) d%
s PR at) (Lekat) L
={ PP, 6t) (+KGL)

w TR (0 T) At (1)

Now 06 reeetion 1y to oceur In the time inserval

At apd tte peobablllity of this la glvex by

LopiT idt. Since p(7"') is wmultiplied by dt and

is shus & first order small guantity, we may
replics dts argument T by T. Thus the probability
of ne wvesntion 1 glven by lep(7)dt. Thls mueh

he nilLiplles by the probeblllity that the temp-
srabturo Is T at the time t. This i1s given by

6




PRT e ad Phvg event {(£) oecurs with the

prolahilivy

Tlep? 1) AuiP{T ,6) AT

Va2 can row gbate thos
L e ety AT = [ e () atlr (T ,4) AT’
+ [P{T~q, )T} [ p(l-q) dt]

de now wedlte

-~
DO, atat) = ple,e) 2 ae

and

i

T’ ,4) P(T%K(Twmo)dt,t)

= p(r,e) + 88 g{mow )aw
3T ©
iy by difvcrontiotivg the volation (1) beiween T' and

Powe sac vhai

i

AT (14K ) AT

fo,, hent condaciion producss a compression of
]
wemporature intoervnly by the fachor i This
! TKat°
comprengion 1g easily seen 1n the large time 1imit,
“f the only changes occurring are dus to heat conductlon,
then regerdiess of how broad a dlstribution, P(T), we

hegin with, in a very large Hime 1t must hecoms a very

narrow peak at the ambient temperature T,.




I¢ we now make the above subatitutions and cancel

the common factor AT, we find

t

[P+ g% 4] = [1-p(T)atI[P+ 3P K(T~T_)dt}[1+Kdt]

aT

+P{T-qg,t)p(T-q) dt

t

P+dt{KP+K(T»TO)§E -pP]
aT

+ texms in {dt)® of higher.

2 KP+K(TmTO)§% ~p{TYP{T)tp{Teg) P(Toq) (2)

Except where indicated 1lri the last term; the arguments
of P are T and t. This equetion iz the basliec differential
equation of the model, The soclution of this is considered
In the next threes sectlons.

The boundary condition on (2) is liwP(T,%) = O,
The initial distribution, P(T,0), mustTg:Bgiven and will
vsually be takxen as 6(T-Ty-q) where 6 is the Dirac delta
function, Thils corresponds to a gingle rasctlon occurring
at t = 0 thareby vralsing the temperature to Totq. The
tempsrature of the "point™ can never drop below the

temperatures Ty of the surroundings. 7Thils Imposes the

condition P(T,t) = 0 for TLT,.




Section II. The Method of Moments.

In order to solve equation (2) we consider the

moments of P{T) defined by

i) = fﬁ.‘nr’('ﬁ;t)d‘f
=T

The zero moment, M (t! = A P(T,8)dT, 1s the probability
I

':I‘l

that the temperature of ths "point“ has some velus and,
therefors, M (t) = 1, The first moment gives the expecta-
tion {or mean) value of the tempersture at the point. We

willl frequently denotsn 1t by ©{t). Thus
Ee

My () = e(t) = TR{T,t)ar {(3)
TO

It willl be mogt convenlent to redefline the momanis
and measure them relative to the mean temperature, G,

This 1s a change from tho earlicr iaeport. We defins

M) = ﬂT«-e)nP(T,t)dT ()

T

[0}
It is clear that M, {t) = 1 but tbhet now My(t) = 0, The

mean square deviation, Mp(t), will be commonly dencued
by Alt).

The moment squations are now obtained by multiplying
{2) by (T-8)" and integrating frow T, toed. We will

treat in turn the terms in equation (2),




@2 <y B
. 1. , . ,
‘/(T--e)n g gr o & riea)er e PR | ar
d} at ' lat at |
“To oL
B ” n-1
=& (re)por + n22 [ (1-0)" par
:'To
.. OGN, 4o
B+ + nanla?

K ﬁTwé‘)nPdT = KM,
Lo

o =
A n 1,5, 11 .Q.E we ¢ | L1 14 - . i;?i 1
Ku[;('l 8) (T )T T = X j.{‘(l 6) " (T~-6+0-T ) 5dl
o} o }L ‘ o
= K [(T»e)“ Yolqr + x(e-1 ) [ (7-0)"2Ear
< aT e A aT
‘o fﬂ
o3

. .
K j’ [-@~ii(T-:=e)“""'~P} o Plu+1) {T-8)R Lo
LT

O

it

»

K{0-Ty) /{%T[(’Twe)ni’] . nP(T»G)I]_I-g aT

. To--

*

0
Yo

~(n+1)KM o oK{O-T )M

K2 -0)TIR(1 ) - K(8-T,) (T,-8)"PIT,)

where we have used the conditlion that lim P(T,%) = 0O,

Towd
Thus we fingd
K ‘%‘(T-e)“(TJP 1Lar = ~{at1)KM - nK{8-T )M
“olar a N “to' " na1
o
Nothing can be done with the term
e
n
J’(T»BQ p{TIP(T)aT
T
o]

10




o
e “ . . N s .
The term lP(TweJ“piqu)P(qu}dT can be rewritten by
"0
letting T = y+q. It hecomes
»
Ff(y~8+q)np(y)P{y)dy
A
o~ 4
If we remember thut P(y) = O for y<T_ we can change the

lowsr 1limlt to T, and 1f we now replace y by T we get
{ (-0 (0 P(T) a1
4@0

Putting all these terms together we get the momsnt

squation,

dM
=2 e (99 e L om0, - nK(6-g)M,_q
5D
+ J p(0)PUT) [(T+qm0)Pe(T-0)P] 4T
bt :

The first few equations argz

n=0 dMO
e pral o) Remomber that M, = 1 by
definition,
——— e o MO.[E = KMy K(GmPO)MO + p(T)P(T)da
7

0
But 1f we romember that M0 = 1 and My = 0 by

definition, this bhecomes

L
8 = . K(o-1,) + q [p(TIB(T)aT
TO

11




e
ne dh oy ooy j p{T)YF(T) [ g*+2q{T-8) 4T

a%
=l allg g ,
‘a‘f"’ + BKM?J i :)A"d"ﬁ’ R BK{@“‘TO)A
7

+§ p{TIP{T) {c_3’+3q&(T&e)*'_%q(wme)*}d'r

The higher order equations may be simplified by

using the 9 equatlion %o eliminate 38, If we do this we

"

find for n > 2

dM

-
D . y ; n 0
pra nkM, = onnwl S pPdT ﬁ'gin[(P~B+q} -{T-0)"1g8T

We then have the following set of eguations for the

moments:

M=l

=
o

1 =0

+ K9 = KT+ quPdT

2K A “JépP[qz®2q(Tw6)]dT

Q1Q
HD

[«71 Yo N
et
o

(6)

M,
3t

+ 3KM, 5’pr{q3+3q2(Tue)+3q(tws)2m3qA]dT

etec,

We must now show how P(T,t} can be obtained from

the moments, To do this we develop P In a series of

12



Hermite functions.
(/4]

8
PIT,6) = e 07" C.{t)H_ (s) (7)
geﬂa ° n=0 n n

H, = the Hermlte polynomial of order n.
a 1ls an arblirary parameter which will be fixsd
in a moment,
Such a dsvelopment 1s always possible., Using #is
developrment, we may caleculate the moments of F. This
1g an sasy matter if use 1s made of the orthogonality

propertles of the Heymite polynomials., The results are:

My = G, hence Cy = I
My = Cq hence Cy = O since M; =0
A= a+ JaC, thus 1f we put & = A then Cy = O,

6(2a)3/2¢, = 6(28)3/2c,
1

Ca =
o e T GniE

In general

Mo

&

Ma

(-l)m Npeom

- L
®n = 7 2 STlneomiT 2ot
ﬁﬂ

ith N = —
wit n (BA)n72 Mn
We sea that a knowledge of the M?s detsrmines the Cis and
thus P(T,t). We have

P(T,t) = —tore 1
( J 75 e [1+ 2?523375* MaHa{s) + ....] (8)

13




T-
where s = ggi o It 1s clear that choosing a = A

P
glves the simplesat posaible expression for P 1ln terms
of the moments.

Section III. The Saddle Point Method,

We now show how the moment equationz (6) may be
solved. The difficulty lies in handling the terms
involving p(T} on the right-hand side of the squations,
We note from equation (8) that if M, is small enough to
be neglected, then P nggumes a very simple Gausglan form

g% . P

P{T,t) = 73%?w e"® o Thus in the 0 equation we need to

treat the following integral
Py

- U d/, “l/T - (T=-0)%
1 = Vggzp L_ﬁ_m_
£ Te e A ar
0
In the A equation we hsve tha Integral

“id

Y -1/7 - {T-8)%
J = ot = .
2mh j[;f © 24 [q®+2q(T-0) 14T

Since we are neglecting Mz, we go no further than ihe
4 equation.

If A 13 small, the Integrands of both I and J are
veryngggngly peaked at T = p because of the factor
o~ ~7 . It would therefore be a good approximation
to treat the rest of the integrand as a constant squal

to 1ts velue at T = 6. In this approximation I becomes
o0

U “1 9 - -»9 £
I= o7/ [e O3 o
21 L

0

1

1L



We commlt negligible error by replacing the lowsy limit

To by ~&®gnd the Integral is %then firivial, We get

I = qUel/®

In the same fashion
/0

4

- ~1
o = q?’ Ue

These results can be improved upon by %the saddle
point method, Use of the saddis polnt method allows A
to be largsr. Let wus apply the gsaddle point wmothod to

I. We write o
. ¢
T =2l ) o1/ F(T) 4o
v

¥onh
'®
where
F{T) = » AT « 3(T=0)%

If we plot F(T), we have roughly the followings

P(T)

To 86 7

15




- . A m . B a1 - L, M A 3 LT a2 ~
We 3ce¢ shat & ‘g pouhed near T = 0 and falls off we

Ty
rapldly to larrs nagative valnes on ofthar side. Thus
the major wsentribuiion to the Integral comes from the

neighborhooc of the peak and ths amallsy A s the mors

pearly ls this %rae. The peak of ¥ is atv W = 2 and 2

may be found by puiting P (1) = 0, Hence
Ee'i(xr') - A/.FTB (ng)
and 4 1s definecd impiicitly by

hfe® . {2-3) 0
or

7 o= 0 NJ7R
We see that the cmaller A Ig, the neaver 1s Z to 0,
The saddle polint wethod now consistn of expanding F(T)

abouy T = Z.

F(T) == #(2) + FHUZ(P-2) + 3FM2)(T-2)% + ...,
If we define R = A/23

G® = 1 ¢ 2R

1t is readily seen that

F(Z) = - A/2{1+%iR)

Fi{y) = 0
F'{2) = . G
F"{2) = 6R/Z
pin)(z) = - (-1)? pIR_

zn=

16



We now write I as

S5
;oo gl 1/BIFZ)HEPT{Z) (7))
B [ e ar
278 Ty
q:_{’)
a RBi{m_ V2
rgn RISV oo GETeR)Rs2n
onh =i
-0

where we have neglected hlgher tsvrms 1n the sxpansion of
B{T). T1f agaln we repilacs ithe lower Limlt by - «© wo
have a simple Gaus: Iintegral and we obtaln
SF1Z) /1 L qu .- LiwiR) /2
G A

T o QUi
a G

We nots that for very small A; R=vC, G«L and Z2+70

which glves ug I = qUe“]/Q 3 before.

The J integral 1a {rvcasted In similar fasbion., We

wrlte
U (‘ i e ”
an —-:.-r-z.- 0[\ i )/ A [q,x,;,gq(rr:?.{,,r/e ‘ ﬂT
ZIa |
e Ti?_.{qie.;.?.u(z"@)] f) {-?F(T)/Ad'l‘
Y2na "/T

(e
4 wéggr [ iTaZ)eF(T)/AdT
Yons Ao

The first integral ls the one we have alrvady treated
and the second Integral vanishes 1in the approximsations

we have made, Therefore

J = %g[q+2( 7.8) ]eF(Z)/A

17




It is not necesgary t» neglecht the higher
powers of (7-2) in the expansion of P{T). We present
bslow the results %o the next order of accuracy. The
detalls are rather invelved and we refer the resder to
Morse and Feshbach "Methods of Mathematical FPhysics”
for a general treatment nf the saddle point method.

In summary:

i3 F '-‘,
1w @ (217801 BBy

J = (%H Ftz)/ [l’q*?Rz)(i “By+Bg) -2{By3+Byg)]
where Z * B + /7% FiZ) = o AIYER) /7
R = p/73
G¥ ~ 1+2R

, 3,2
B, = .. Rlﬂ (1%-67,5R+22,5R? - 1583 /8)
('
L i
By, = 2
gt

= 15/2 RigB(z 6R¥RE)
G |

os]
=
]
§

The B terms are those which arise from the higher
order saddls point treatment of the integrals. These
terms are negligible 1f & is sufficiently small.

It should be mentioned that these same techniques

sre atill applicable 1f the higher moments (Ms, etc.)
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are not neglected, It is then necsssary to use the

saddle point method to a higher order of accuracy.
We are thus faced with the problem of solving

equations {6) and {9). With the neglect of M, these

bscome

49 + Ko = KT, + I

{10)
+ 2KA = J

alg

with I and J defined by (9), Ths initial conditlons are

i

8{0) = T, + g

LL0) = 0

The equations (9), (10) and {(12) form a clossd
sys tem whiech can be integrated oumerically. This gystem
wag prograrmed for the IBM 650 computer and twenty hours
of computation wore carricd ous. These computations soon
indicated that »lthouph A <o 0 for % == 0, it rather guiekly
growr to such a large velue 23 to invallidate the approxi-
matlong made eariier on the assumption that A wae amall.
Purther, as A grows in slze this is an indication that
the higher momerts, My etc., are alm beceming Yeportant .,
We see, thersfore, that the above toechniques, whieh in
principle wlll yleld a solution, ave in practice muca too
tedions to be useful. In the next sechlorn we sec how this
difflculty can be clrcumvented. The technlmes we have
developed in fections 11 and II1 ave stils appilicavle but

in Al fgt iy alteraed farm .
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V, Twproved Solugion.

=4

O g d
LCLT1I0N

I
!

The equation we wish tn solve is

A

- KP = K(T»-To)%% -p(T)PiT) + p(T-q)P{T-q) {5)

with the initlel eondltion: P(T,0) = 3 (T=Tu=a).

Now if there were no resctlions scevrring, the Inlitial &
funetiop distribuition would meva %o 1 ouer: temperature with time
but would remaiu u egﬂfuncﬁion, Tn fact, if we defline

Y{t) o be the soluntion of the ecuatlion:

dy - . =
5% YT oY = g

P

o
ry
-

1% 1s clear thot V(&) veprenents the bemperature our "poing"
would have 1f 3% simply loses bhoat by conduction -- no
reactions,

1% 1is now evident tha® P(T,) = S(T-Y(t)) should

satlsfy (2) with the veaction terms omitted; namely
L. xp = (1,35 | (13)

To verify this note:

E-.F sten, %=

Substltuting in(i13) we flind

ay ¢ ¢
- 5¢ S(T-Y) - KF(T-Y) = R(T-T ) § (T-¥)

2C...




?

or  [K(T-T,) + Gl §TTY) + K(2oy) =0

Now using (12)
[R(T-T ) - K(Y-T)] & (rv) + ®Kg(r-y) 2 0
K(7-¥) §{T-Y) + K §{1-¥) Lo

Usling the property of the 2 function thal

xé“.(x) = - 5(x) wo have
<« KF{T-Y) + K 5(T-Y) =0 ged,

Lst us now consider tue effeci of reactions. Tho
& function will not only sink $o lowor temperature
because of heat conduction, it will also decrease in
amplitude due to the occurrevnce of reamctions, ‘This we

may taks care of by writing

Alt) 5(T-Y($)) with A(O) = 1,
As time elapses the probability of a reactlon increases
and this means the function P(T) will begin to grow a
11ttle bump in the neighborhood of the temperature Tot2q.
The probability at To+2q will also be undergoing reactimns
thereby buiiding up a4 probabllity bump in the nelghborhood
of Ty+3q. Thus after a shori time we would expect P(T)

to have the indicated character.
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pP(T)

Stev. at ¥(t)
k// small bump at=Y(%)+q=T +2q
q V[ _small bump at=Y{#)}+2q
4 AJ‘L A 1&6 A £

This plcture suggests trying a solution of ﬁﬁe forms:

P(T,t) = Al%) S(T-Y($)) + E) Ay{%) uylT,t) (1h)

m=1
The uy, *s will be taken as normalized so that vfhde = 1.
Also u, fg locsalized in $he nelghborhood T =Y + nqg.
Thus the problem becomes ons of determining ths Ats as
functions of time and the wu,'s as functions of T &nd t.
We now substitute () into (2). Because P(T)

is different from zero only in well separated reglons,
we may conslder individually the various reglons. Consider
first the region in the vielinity of T = Y(t). What terms
in Eq. (2.) contribute in this region? It 1a easy to see

that we have:
[3-kA + p(DAIS (1-¥) = [¥ + K(T-T_)] A5 (1-¥)

and these tarms should equal zero,

Now using (1) we have

¥+ K(T-T,) = -K(Y-T ) + K(T-T,) = K(T-¥}

n
az




Remembering that x jj(x) @ - 5 (%) wo ged
[A - K& + p{T)A] §(T-¥) - KA(T-Y) S(r-¥) = 0
ST, o’
”.§(T-Y)
Hence [A ~ KA + p{(T)A + KA} §(T=Y) =
or ~ ]
A+ p(M)A) y (1Y) = 0

Because of the § function we may elso write this as

(A+ p(¥)A) §(T-Y) = O

For thin to vanish we find

v o e TS N~ T TSESTITOER 5
o

A= «p(Y)A | {(15)

o e et g

This result could clearly have been wrltten down
immediately., Tt simply sayn that the smplitude of the §
fometlonat X(t) changes dus to $he reactlions which occur,

Consider now the teims which contribute in the
neighberhood of Y(t) + q. These torms are:

Ayug + Aguy ~ Khguy = K(TWTO)AI%%L ~p{T) Ayus
(16)

+ p(T=q) AS (T-q-¥)

Note that the term p(T=q) P(T-q) in (2) furnishes the

connection between the two reglons.




For m.: 2 we have In general

®

° v
Agum ¥ Ayt = Klpuy, = K(T-T )Afaan

- pi'I‘):’xmu)TJ

117)

- pA Te q)A "T“'q)

u
oy e 2
How shall we scive thess equsticns? Eq. (15 1s of course
no trouble, vui how do we treat 16 and i17)? The moment
technigque i{s applicable,

Let ua define: qm = {T ude

P f“ ri ~ n %]
ATIC = - Jouod
and Mnm 5 Gm Y(J( T

Consider now Ec. {16 . We will uuppress the m *+ I gubseript
and write M_, ¢ u rather than M, 6;, u,. Multiply (16)

by (7-6)¥ and Integrating we mert the followling terms
&

ALl

i

Ay S -0 P uar

A, f(’l‘»@)ms}}dﬁ.‘ a Ay _gz_ ( re0)agr + f(T ) "6 ude[

- KA, j'zrvue)%dT KAan

KAlJ‘T T,)(1-0)°5F ar - K4, j (T.-0+6-7,) (1-8) "S5 ar
{ mtlau N -
KA, )(T"e) %’,11 dT + (emq_o))(q“e)n% dTJ

KAltpﬂnvl)J((Tme)nudT ve u(ewTo)J;(Tae)nclud?l

4]

th

{t

- Ka, [ (n*1)M, + "(G'To)ani

2l




he b oY S oTIUGY sdeh cuanpot bo stwpllified
)

toa (T p Tag) S0 oY) dT - ALgPY 817 p.Y)
Putting these all togesther wo find:

N ™
P P

fally & 4y § W, T Nk + M, 0 - k(0T Ay

{18)

e

A j(*T' 6,7 piTIwT)dr + Ap(Y){Y—*q«B)n

By definieion M, = 1, My = 0, foms ldor (3) for varioug D,

a0 A, ApiY) e A {prP)u{Tiaw

e o

. , e )
n w1 A8 e - X1e=T )Ay ¢ ApiY) Yte-8) - AL§<Tae)p€T)u(T)dT

N

Lonctoe M, by A

!5
3

o n (’)
Byd v Ay D+ 2y Ap{Y).Y ue)
- B, ﬁimme) ol )u(T)aT

A

We may use the n = 0 squacion %0 elimipate i fvom the n=2
equation.

. !
Ay 90+ 264 ,?"4 Ap{Y) i{ ¥+ q:G AZ’
: Ahf{Vm 0)% - A% ptT)u{T)dT

Tf we assume the higher moments are negligible, we are

led to the following syatem of equatlonss




a = nivYa {l()&l)
Ay = Ap(Y) « Ay {p(T)u{T)dT (19b)
l =f

@ (‘ . .A N

0 = - R{8-T,) = AAT=8)plT)uiT)aT + F] plY){Y+q-0) i9¢)

a2 . N e{,’ : 2 7 , Py A . .

b= . 2xs - firee)© . BT piM)uiTidl +5; plY) f/(ya-qae)a - }

(19a)

- Note the intevpretation of {19b).. A, measurss the
total probabllity of the firub bump {since W 33 normalized to unilt
probabiility). How dves A; change? L% galns from reschlons
ocecurring at hthe jﬂfunction lterm Ap{Y)] and 3t logses bocausae
reactions occur at the Tirss buop cqusing "sransitlions™ to
the second bump [term - A, {p(T)u(T)dTE“ u 13 of cow se
8t1ll an uvuktnown functionn\‘HOW@vaﬁ, 1t can be expandod

in Hermits functions juat as B was In Section 1T,
o ATe0) "

L g B2A e ége
w (P ) = e p A .
1T, %) o p) cn{m)nnvﬁ,ab) {o0)

The coefficienty Cp are rajated Lo the moments. It is

sany to show that

") Nots: C, and C, vanish

M- A because we defined B8 as the
Cp = —ﬁzw-: 0 since Mz = A (mean of u and A as the menn
square derivation of .
Cy = 3

T b(2a)3/2 He

K .
15 (=) Nk N, =t M,

/T ok B(5-2K)! 2K

Q
)
i
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Since we assume M, and hilgher are nepligible we getl

- [T-8)%
W= —mmen o7 SRR (21)
Y2nh

The u in {19) is %o be interpreted as (21) and then

equations {19) form a closed system for the quantitles
A, A;, 6, b, 21l of which are functiong of ¢,

The saddle point method of Section III may be
applied without change to the integrals of (19).
Omitting the B terms we have

" (1A R/
4}P(T)U(T)GT . g o (1+4R)/Z

P ~ ; /J
)(T°9)P(T)u(T)dT 2 (zwg)g . (1+4R) /2

. AU o =(1+#R)/Z (22)

7¥G
j[(moe)"'-:zx]p(l')u{tr)dv' = [z-e)‘*~a+§§::1
L_GI o~ (1#1R) /2

It must be remembered that we have been looking at the
first bump and that many quantities in equations (19)
and (22) need the subseript ", ".

The hlgher bumps, m»=2, are éreated In exactly the
same fashion., The only differencs is that the J function

is nc longer present for m Z2 and therefore those ters
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4 flgb‘}

in 7, {19y), and {194) whieh involve Y are

19
vreplaced by integrals,

We give below ths complets set of esquations for
the‘éfunction and the {irst two bumps. The squations
for all higher buwaps ars obtained from those for m =

by simply changing subscriptis.

m=0 A= -piv)A

”
A, = Ap(Y) = 4y Eap(w>ultw>dT
T

91 = ~'1{(9L“T0) j ('L‘wel)p('{')ulﬁT)dT

© e

+ RepiY) (Thge8s)

5 =

By = =2%hy < [(140, Y%Ay Ip{(Thuy (1) 4T
“B

+ (V) [(Trqe0y)%-1,]

|

The integrals are given by (22) with 6 = 0,,

Z = Zyy b= by, G=0Gy, R = Ry Z, G, and R

have the same definitions as given in Seetlon IIT.

i

Ag = A,y )p(’i‘)u,('r)d'r @ Agp fp(T)ua(T)dT

~k(0g-T,) - TgT;;gg)p('r)uz(T)dT
+.%i ;4 (T+q=84)p(T)uy (T) 4T
4]
o}

.
®
i

=c

({T-8.)2-A,)p(T)» (T)aT
- T?} Al 3

[

The integrals involving wa, are given by (22) with

8 = 8z, Z = Zy, 4 = 0y, etc., The integrals

28
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J [(T+gq=0g)2-25]p (T} uy (T) 4T
iy

- e

L

(23)




involving Uy ars alightly dlifferent.

]

&

( - - 3
}T(g'l‘+q~-«83)p('l‘)u1('1’)d'j? = (Zﬁq»eg)-g;— o~ (1+3R1) /2y
Py~
}'[(T‘%qvnaﬁ)z"&""]p(gﬁ)uliT)dT = -9-}-‘-__ + {Zy+q=6,)8=0z]
1 6%

u_  ~(1+3Ry) /7,

X &

The 1nitlal conditions are
A= 1, A,n = 0 for m& 1L
B, = Ta + (mtl)q
A, =0

This system is amenable to solutlon on a compuier.
It has, in facl, besn prograrmed and preliminary calcula-
tions carried out. The results indlcate that the bumps
remain very narrow and therefore that the approximations
baged on small A ave very good,

The actual calculatlons are, however, performed
with the modifications of the next section,

Section V., The Expanding Single Point Model.

As indicated ln the intreduction,; it 1s possible
with minor medifications to convert the "single-point”
model into a much more realistic model. It is the purpose
of this sectlion to indicate these changes. They are two

in number; one scrves to romove the restriection to a fixed




namber of molscules in the hesated region - thus we
term this ths "expanding single point™ model. The
other change takes into account the fact that when a
molecule reasts it is then unavailable for further
reactions,

If an amount of energy Q ls relsased at a point in
a medium at & = O, then the heal eonduction equatlon pre-

dicts a gphorical tewperature distribution given by

2

(i se = Qh . 1 hd -?-""- 1
T (s o t) 8‘]’(3/20 'in)B/? e I;Dt 4+ %o (2!4\)

where C 1s the heat capacity por unlt volums,

D= % k 1s the thermal conductivity.

Te ia the initial temperature of the medium.

This tempevature distribvtion is quite well approximated
by a dlstribution which is conatant from r = 0 to » =
JEBE and drops to Ty for T?N/EBEn In order to conservse

heat energy the constant value of T rmist be

T=72,+ Thus we approximate {2l) by

G, 1
go(3L)  (p5)3/2

on 1 -
T(r,t) = T, + 3%5 % 50 ra#th
{25}

—— p

o 7§ Dt

{1
3
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The heated reglon is now seen to be expanding
with a radius proportional to JE; The volume of and
thersfore the numbey of molecules in the heatied reglon
grows proporitional to t3/2u

The quantity X introduced in Sectlon I described
the change in temperature of the "point" due to heat

conduction and was so chossn that

4T
9t

If we differentiate {25) we rfind

= SK(T-T,)

o)
=3
3

. .3 9/-=3/20 } . .31f[.3 o 1
dt 32.’.’1t6'</(Dt)5'/2) %F[’}f’%b&(m)ﬂe]

z o2

e o s p (1-T)

i

Thus we may 1dentify the K oi the preceding four sections
with - %,% » in order to go %o the expanding point model.
The fact that X is now a function of time 1In no way
invalidates owr previous development,

If now a second reaction occurs we again have an

energy release of amount O, We must now assume that this
energy is distributed uniformly over a region of radius
fZS:’in order once again to preserve the single polnt
charactor of the model., It 1s easlly seen, from energy

conslderatlons, that this wlll produce 8 rise in
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temperature in the amount

=3 8 1
47 32w T () 372

Therefore ‘the q of the preceding sections is now to
be taken as a function of t rather than a constant.
Again, all previocus work 1s valid wlth thls change.

Now what changes ars necessary to take into account
the loss of avallable molscules as reactions occur. We

can introduce a characteristic radius, »,, such that

%ﬂr°3 = Vo, the volume per molecule. This leads to =a
characteristic time %, which 1s equal to the time it
takes the heat pulse (25) to spread out over the region
occupied by a single moleculs, It 1s now clear that no
reactlons can occur until %>t  bacause only then has the
heat pulse begun to move Iinto a reglon where unused
molecules are available., We seo then that the numbsr of
molecules availabhls for reactlon at any time 1s propor-
tional to (£3/2-%,3/2). We should therefore write p(T)

as Us~1/T yhere U = V(t3/2mﬁo3/2) with V = ;—%720 Als

the frequency factor of the Arrhenius equat:igno

These remarks ars valld if only one reaction has
oceurred. If, howaver, two reactions have taken place,
we have used up two molecules and we should put
U= V(t3/2-2t03/2)0 Hence, in the language of Sectilcen
IV, we see that when we caleculate with p{(T) at the &
function peak, we should set U equal to V(t3/2mto3/2)a
When we calculate with p(T) at the first bump, we
must set U equal to  V(+3/2.2¢:.3/2)
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At the second bump U = V{t®/2a3to3/2), etec. In all
these expressions if ¢ 1s such as to make U negatlve,
then U is cetually zero.

We see that ths higher bumps are only sactlvated
after an appropriste interval of time. Thus the first
bump only begins to appear when ti*%,, the second bump
when t % 22/3t0, e%e. This has the effect of changing
the inltlal conditions asscciated with equations (23).
It is eclear that the ecaleulations with (23) begin at
t = tg. For §ty, A= 1 and A = O for all m, "&,"
iz & natural time unit and In the numerical calculations
t, has been set equal to ore, The Initial condltions

for the flrst bump are:

Ay = 0, 8, = 0, 83 = Y{b,)+alt,) when & = &

The initial conditlons for the second bump ares

Ay, = 0, B, = 91(t1)+q(t1), Ay = a8

20,2 (tq)

when t = t4 = 22/3¢,
Similar conditions hold for all higher bumps.

These changes seem to complicate the equations a
great deal but, In actual fact, since the computations
must be done on a digital computer anyway the complications

are relatively minor,
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Section VI, Probebilisy of Initiation.

We come now o the importart questlon of
delermining the probabllity that an initial reaction
w!/1l lead to initiation of explosion, To answer this
ve must consider the behavior of the bumps with time,
in particular the behavicr of the bump amplitude, Ap.
7f we look ab some bump, soy the mth one, we see that
1t 1s gaining protabillity from the next lower {(m-1)
bump nud losing probabllity %o the noxt higher (m+1)
bump. A% the seame tlme all bumps arve ainking to lower
tompsvature because of heat conduetiion. When a bump l1s
fivst actlvated it will galn move from below than 1%
icges above., 1% will thus increase la amplitude for a
7ime. DEventnally it will bepin to Jose more above than
it gaing from below and the ampliltude will start to
decrenre., Now the m-1l bump sventually sinks to so low
a temperature thai 1t no lcnger feeds the mth bump, The
mbh bump continucs to feed the wtl bump and now we can
envislon two possibllities. The first possibility is
that the mth bump continues to tvansfer probability to
the m*1 bump so rapidly that i%s amplitudo, Ay, goes to
zero before 1t sinks sn low In temperature that 1t can no
longer undergo reactions, The second possibility is Jusg
the converse, namely, the m¥h bump does nof empty 1tself

before its temperature gets toolow to produce reactions,
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In this case Ay wi1ll approach some constant; non=zero
value,

In essence, the above paragraph simply states that
1im Ay, 1s sither zero or non-zero, However, the above

te®
remarks also make clear the fact that 1if 1lim Am = Q

4 2en
then 1im Ay = O for all £>m. Also if 1im Ay, {s non-
t s t e
zer0 then 1lm Ap 1s nonegzero for a1l f< m, Thus the

tPae
A¢s 8plit into two groups defined by some integer

m, such that

1im Am £ 0 mem
tpe0

lim A_ = O ma m
topaan

We see that all bumps with m ™ represent cases where
the chaln reactlon died out and did not lead to an
explosion, Therefore the explosion probablllty is
given by

1 = lim {A+A3+Az*. .., Ag)

t-2o

The procedure then is to integrate equatlons (23)
out to the last bump for which A does not go to zero.
This determines m and then {26) gives the probability

of explosion,

(26)




Sectlion VII. Numerlcal Calculations

In order %o proceed wlth numerical calculations, it
i1s necessary to arrive at resasonable estimates for the
parameters of the theory. Since at this stage no effort
is being made to make a direct comparison with experiment,
we are only concernsd that the paramsters have the proper
order of megnitude.

As pointed out previously the quantity T, referred
to as temperaturs, is actually belng measured In energy
units, That 13, T actually signifies the temperature
multiplied by Bolitzmannts constant. The natural unit
for energy 1s the activation ehergy E and is of thé order
of a few slectron volts., Since most explosives undergo
thermal initiation in the range from 200° to LOOOC we
have taken Ty, the ambient temperature to be of the
order of 600°K. In energy units this is about 1/20 ev.
When divided by an activation energy of about 2 ev.,, this
glves a T, of about 1740, Thus we have calculated with
a T, of the order 0.02.

The quantity g 1s glven in Section V as

q = which we write as « Thus
32n  ¢(pt)3/2 t372

We —3% . yhere
32 ¢p3/2

Q 1s the energy release per reaction
C 1s the specific heat per unit volume
D=

Q|

where K is the thermal conductivity.
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Specific heats are of the order 0.5 cal/bm3°C and
thermal conductivities range from 10=5 to 10~°
cal cm sec®C. If we take K about 5 x 1074 we ring for
D a value of 10”7 em%/sec. Now the characteristic time
to 1s defined as the time required for the heat pulse
to spread out over the volume occupled by one moleculs.
According to equation (25) this means JPZSZZ squals
a molecular radius. The unit cell for the azles has
étmensions of the order 6 A%, Thus if we put D = 1073
and /Dty = 3 x 1078 we rind t, £ 2 x 10713 sec. Thus
our time unit will be of the order of 10713 gec.

To find a value for W we proceed as follows, If
we measure time In units of to then W 1s clearly the
temperature rise produced by the reaction after a time

t l.e., after the energy of reaction has spread ocut

o’

over ons molecule. Thus W = R « Now

222 (pt,4) /20

1§£(Dto)3/2 s just the volume occupied by a single moleculs
and is of the order 10°22 cm3., q, the energy released
per reaction, is of the order 10 ev; and the specific
heat per unit volume is sbout 1.5 x 1019.ev./cm3°0. These
glve for W about 5000°C. Converting to electron volts
we get about .5 ev, We now must divide by the activation
energy Ea2 ev, and we finally arrive at W % 0,25,

We have written p(T) as V(t3/2-t03/2)e"1/'rc

If we measure time in units of to thia becomes
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~E/RT

o Now when p(T) is written in the fomm
p = NAe » 45 1lg customary 1n the chemical literature,
4 ranges from 1013 to 1019 sec"l. We must convert to
our time unit which will change A to-range from 1 to
106, N 1s the mumber of molecules involved, which in
our case should be taken as one. Thus we see that V
should range from 1 to 106, We have calcula ted with
V = 10® ang 10°,

The following graphs present the results for
caleulations with W= ,23, V either 10% or 103 and
To eltber .019 or .02, Thess calculstlons wero carried
out to the third bump with the hope that ths value m
defined in Section VI would be reached. This did not
prove to be the case as the results show., The calculations
did not extend beyond the third bump because the program,
as written, used the full capaclty of the IBM 650 computer.
However, the results show that the bumps remain much
narrower than expected. That 1s, the quantity Am’
which measures the width of the meth bump, remains very
small throughout the calculation, This means that to
very good accuracy we may lgnore the wldth of the
bumps thereby greatly simplifying the calculations. We
have almost completed a new program whileh ecan compute
an unlimited number of bumps.

Although the calculations presented do not reach
the value m, they do otherwise exhibit exactly the
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behavior predicted in Seetion VI. The bump amplitudes,
Ay, start st zero, Increase to a maximum and then
decrease finally to a constant value,

Section VIII. Conclusions and Recommendations.

The calculations prssented are extremely encouraging.
We feel that the nearly completed program, designed to
calculate an arbltrary number of bumps, will allow us to
reach the WM bumps. This will permit computation of
initiation probabilitles. We strongly urge the continua-
tlon of the computatlonal program,

We have Just recently made soms progress in an attempt
to obtain a completely analytical solution to the "single~
point™ model. Such a solution would be an extremely
valuable additlon to the numerlcal results as it would
allow the general nature of the "single-point™ model to
be mors adequately explored. We feel this to be a very
promlsing area of investigation,

Perhaps & few remarks concerning the signifiqancé
of the model are in order. The model is admittedly
much simplified. We feel, however, that 1t is a signifi-
cant exploration of the probabilistlic aspect of the
initiation procesy. After the changes of Section V, we
feel that the only seriously unrealistic aspect of the
model which remalins 1s the matter of assuming that the

energy Q of a reaction is spread uniformly over the

IR




entire heated reglon, It 1s clear that a more reallstic
treatment of this polnt would make the probabilistic
approach even more necessary.

It i3 our feeling that a completely adequate
treatment of the initiation process might contain the
treatment of this report as a brldge between a more
detalled treatment of the esarllest stages of initiation
and the latter stages when the heated region has grown
to a maecroscopic hot spot for which a probabllity approach
is unnecessary. We have begun 10 look at possible
approaches to the eariiest stages of the initiation
process and have some indication of progress in this

direction,
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Chaptey 17

M, Migushima and D, G. Burkhard
Section I. Probablility of Reactlion as a Function of
Intermoleeular Distance,

The potential energy may bes plottesd as a function of
intermolecular distance as shown schematically in Figurs
1. In the dlagram r,
1s the equllibrium dilstancs
and the curve I gives the
potential energy as a
function of v, I the temp- \\ -
erature is not high,

molecules In a solid will

| .
vibrate about an squilibrium ! '
i i
position in an approximately L !
e bl >
simple harmonic way as will © o r
Flgure 1

be discussed in the next

soction. If the amplitude of vibration becomes large
enough, the aubstance can go into new equlllbrlium config-
uration wlth potential energy represented by curve II,

If the emplijude becomes larger there wlll be & probabllity

of the resction
Ng + Ngm —» 3N, + 2e (1)

where elesctrons on the right-hand egide are taken up by

the metal ions.

3




The situation can be iliustrated schematlcally by
means of a serles of equipotential ensrgy contours as
shown in Plgure 2. In thils diagram the potential energy is
expressed as a function of the N~ - Ng~ separation and
aiso as an average of the N, ~ N distances., The s0l1i1d
equipotential curves show potentlial energy contours when
the 2Nau configuration 1s maintained, The dotted equipo-
tentlal curves schematically represent the potential energy

contours when the nitrogens become predominantly N; groups,

"‘ A S A
3 b <
| Bl EORE
g“ w,,r’ “3 E{ﬂ‘ ¥ o - E‘zj . F:’
distance ﬁ“ i
batwasu ;l &
Ya m[\jwﬂ

a=0

Schematic of Equipotential Contours

‘ PMguroe 2
Since the configurations have different electronic

structure, the two potential surfaces can co-exist at

by

distance between N~




each point of this diasgram. The winimum of soclid-lined
potentlal surface, of courss, corrssponds to the eguillbrium
distance of Naﬂ ions, while the dotted-line potentlal surface
does nof have a minimum except at infinity since N, molecules
are known to have no bound state (a Nh molecule). The cross-
section of this dlagram along the broken straight lines is
our Figure 1, where the curve II 1s for the 3Np; configuration,
Reactlon {1) can occur if one brings two N, lons
along the curve I and crosses the point where aa(rowr)
1s a_. This a, is called the eritical amplitude, It is
possible, however, that even if the N, Ilons are put tbgethéf'
with distance smaller than thié eritical amplitude, they come
back o the 2N configuration following the curve I. They
have to Jump into the curve II In order that reaction (1)
take place.
The probablllity that molecules jump from the curve I
to the curve II can be assumed tio be proportional to the
time that the ZNam system spends in the region over the
critical amplitude a,. The probability can actually be
a rather complicated function of the N, distance. The
above assumpticn corresponds %o the simplest case that the
probability 1s constant only 1f the distance is smaller
than this critical amplitude.
The tunnel effect can produce the reaction even if
the amplitude of the osecilliatien is smaller than the
critical value, but the probabillity of a reaction through

such a methanism rmst be negligible.
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Suppose agy 1s large so that classical mechanics
gives a good approximation, If the vibration 1s simple

harmonic, the displacement x 13 givsn by

x = Z, sin ot

dx =2 u’::‘ga
5 oa/x% X
Fraction of a period spent in tlwe 4t is dt/T. Thus ths

probabllity that the partlcle be found In range

xwxtdx 1s

Pox = 9% = ... dx (2)

7 pumsrepini

Tty {xgmx“ 2ﬁb/§§~x“

Lot & =t §{x) be the veaction rate when the particle
is at x. 11 a roactlon ocemrred only for x = a
jﬂf(x)ﬁ(x~ao)dx = %(a), for example.
¢

If there 1s a certvsin preobability Pdx of particle

o then

belng found between x, and xtdx then Pdx glves the
number of reactinns per unit time while the particle 1is
in the range xasxtdx. Thus the effective reaction rate

for the simple harmonlic oscilliator is

% E
k2| §orax =L | SExldx (3)
.} 7( X

m-xo/!!xgﬁxs

1. Suppose the veaction rats is sueh that

(f(x) ﬁ«fl it x > ao

()

= 0 it x < a
o}

16




whereéi is a constant, The effective reaction rate K 1is,
from squation {3}

" Xq

T x"axg
€(x)
T
gIl.
Lo
oo e B e ) X

o
Case 7. Model for weactlon rate f{xh
Flgure 3

£ 1s just the fractlon of n capable of reacting.

g Xo -
. o . i a
f= > S i sin”! & = L % - sin~! Zo
. 7 Vggwxg Fo T %o
0
80 that
Kl‘g 0 if xo<€0
el " (6)
I -1 8¢
Ky 2 215 <~ sin = 1f x, 2 a,
0
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v J./2
x//“
Il’;/
e
e
"
e e« = aonmriean e -
7
e = o sk ao ----------- ..% .,.a—‘sza-—-—j\b xo

Case 1, K;{n) as a function of amplitude x,.

Figurs b

2. Iy some cases one may eoxpect the weactlon rate §:to

be a Jdelta function as shown in Figure 5.

&
5
0 g ——P X
Case 2, ,f(x) a delta funetion at x = 8q o
Figure 5
That is, .
% = $,a,6(x-a,) (1)

2 +g 1ntroduced so ihat §F, may be of the same dimension

asrf} In this case woe denote the effectlve reactlion rate

cons tant by Kg.




dnme ooiaing Yoo equation (3} agaln

D
§F ag | o
- 1 . Y O Ol x~a
e S S T j %»-&’jz
£ ) ix mxfd
X f

Inteprating thls, on: has for the sffective reaction

rate b

Ky = O if x £a
I v b"‘ry - { 8)
Ny ot 1 / 1.1 AC‘ P4 80

L qualitetive plot ol K 89 & function of amplitude
Xy e shown In Flgur- 6.

N
K- %%\
t
A

' A

\ «
! I TR S e
e S
e e K

Casc 2, Ky 2o a function of %the amplitude x .

Flgire 6

3. Trere can bte a vnse svch thet the reaction probability

is n tinsexr furctior of the veloeity end occurs when

&% o8, 30 tiat T4 ir glven by the operator

i) = 2?53'1?5(;4-.&0” (9)
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N . [}
AL

2 i3 sle perind of ozedllation and v the velocity
ol Ko
The rate

conavant is then

3
Lo (o 5(xea
K;_J, = ‘K&Tf LPG(;’.Z“’HQ)V&K L .,ng: ( O)

—"-7:3;'&‘&; © V‘x‘g-x‘a dx
) 1§ x5 -x®
”juxn won !

v, o
E ;‘35‘ S% r P,
Thus,
Ey = 0 10 x, s
~ {10)

1w this cage

congsens wher bBn

olfective voecliion rate is simply a
ne

ampLitude sxceads e, Plot of Ky as
n funcrion of K,

iten Y alinly as shown in Flgure 7.
K.‘ (5

/7§1,ML,.,T.u,ﬂﬁﬁ,?,”.“numa.,
2%
o o o e e . A
a e
Cage O/ Ko

ay a fvnetlon of the amplitude xq.

Figure 7
foegion 1T,

% aeacrenass el o

Minsiieln Approximation.

In order to obteln the overall reaction rate, that

ig, she total rumbes of veactioasz ger gecond per unit

masy of a gol .d which 18 in & thermal equilibrium, it is
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now nacesarry to caleulate distributlion of amplitudes
Xy at a glven tewmpercture.

In the Einsteiu approximation we regard the crystal
as corsisting of N Independent oscilllators, all of which
are vibrat’ re with the cormon elrcular frequency w. If
we agaume that the oscilletors are harmeonic the energy

is

=
T

= .%mw”x"g (11)
whiieh is, In quantur mechenics, nliw where 1 1s the

quantam pumber and wmay tabke oo poaslitive integer wvalues.

Thusg
‘ o
K, {/.‘S;L’..‘ 12
U ¥ T (12)
The prooabilicy ol findlayg an osciltliator in the
quaniran ate vy n 1y given by
o "TH0/KT ‘
arimo e e (13)
1 e =T/
EBirst:In wes able to sccount for the essential behavior
of' 5l heat capaclby ol zvysutal by thls model. By means
03" shisz modal one can now celceculate an average reaction
geta.
‘e nunoer of reactlone walch occur In unit time
UL, .
ver et fs chen glven by
. oo/l
- F R R ? 1 (14.)
Feg) eIt
A Lo frw /3T




where K.n) 12 the eilective reaction rate cd cvlated In
the previous sectior expressed &s & function of the
guantum nwsbar n.  Fy using three expressicns for K
obtained wefore we can parform the above calculation

ag follows:

Case L

¢ nhe N

: .oy =The ke
. é K 2 in ;€ ’ T N

; T 1SR ATIRATE S 1k sy A F Y 0 R ARATS (-) 'f‘l

Ay e LO/KT

.
[

RIT AN .

| " .1 ag| -ne/T ,

w Mﬂawgmfm??.g Ej‘waiﬂ 1 Zole / dn, {15)
ﬂilwe”ﬁ/“); { Kos

w2 Ty .2 oo
w_}.l ene e .zl:iﬂ 72 f_’xf)u(;‘uii : ‘.’.’{“—‘f.} FNA
< "0 mn ¢+ Po T T ¥ "

- p o wen a
jortgiasy the portion of the integral Iz al L ;3 o
0
et : Dk
i Be -ng/T - 4 .
g~ S o T an = ] 3in I(no/n)* e~/ ay
th- ‘X‘C‘- .LJ’ n N .
o ‘ .

The eipenensrel s 8 maximum a% v = n. and decreases very

o}

rapidly as 1 Inowenses. Therefore ao uaccurate expansion

-1, 7 "; e ] Lo
- b § R B ‘O b [
for sin” “{n 0)}¥ 1z mequivso only foy nen {sin no/n n/2).

Now  sini7/2-y) € 1-3®/2 so 1/2-y = sin“lilwyz/z)

o

Let 7= LayRf2, e f§{1w27g gince z 21, let 2 € 1ty
Ther: n/a-t1-git @ gaplg .

So that «in'(n,/n}? & w/2-tn-n_)/n * n/2-(n-ny,)/n,
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So intagral for Ky is

N ) d .
K, = o, ,g.n,..;n:-};m..m-. e 4 {ne=n 0) £ g en/ Tdn

Let fer o w N
0

(’gi@ ,
; 5 Yy -

5 (Dwne)f q““n/Tdn P AL :
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o *0
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Z
% - >2% 1 1 .
2 T g~ Bu/KT (2R 3 HA =
me o
a&mu
where n_ = oM , b:’éﬁo
© 2h

-1

: "Deabn
Consider the integral, I = h
)

o}
[%“ ~b ~bng
e e e

I JO

aw

Letting ¥ = «®

dn., Let 2o/ = n-n,

e?
I = 26Po [v L !/}L
& O b

Thus 7
7, = 5273 (2) T/t
ﬁt . (1««—9‘9/‘1')
Case 3

For X, the lntegral 1s simply

28 ~rfin/ kT
Ky = 2%, 2. /k--—dn
1__8-ﬁ0.)/kT

Np

_ 2kT$, 1
Bo _~Be/u?

2%, I 2:3212_
0 1-6-8/T

wlth the same expression for T, as before.

1§

K,

e’-!15m/'k'f

(17)

oS

)

(18)

In order to compare the theoretical models with-

experimental results, it is necessary to know how K varies

sk




with T experimentally. The principal variation of K with
temperature, of course, will occur via the Arrhenius
factor because of the large values obtalned for Ej (of the
order of 20-40 kilicalories per mole). The "activation
temperature®, that is, the quantity E /R will then vary
betwesn 10,000° and 20,000° Kelvin. At the time of this
writing, we have not had an opportunity to examine all avall-
able experimental date on the reaction rate constants as a
function of temperature in order to determine whether the
smaller effect associated with the £(T) in the reaction
rate constant ¥ = Af{T)e"Eo/RT can be separated from the
effect of the Arrhenius term e_EO/RT {when R rather than

X appears in the exponential, 1t 1s understood that Eo is

then expressed In calories per mole)., Careful study of
experimental data should be carried out. A brief discussion
relating to some experimental results for NHhNOS will be
presented in a later sectlon,

Thero are experimental sltuations other than a direct
determination of K, however, which may enable one to say
something about the applicabllity of £(T) to the explanation
of experimental results. Reaction rate constant appears
in the general conservation of heat equation

cp-g-f- = AVET + Qr¥

where C 1s the specific heat,,ﬂgis the density, A is the

thermal conductivity, Q the heat of reaction psr mole,
n the number of moles per unit volume, and X the

calculated reaction rate constant. To reduce the

5g



complaxi of this eguation and alsn to deflne a8 simple
experimental arrangement, one may investigate solutions
for either an adlabatic arrangement or for a steady state
condition.

The statlonary state ls defined by

ATET = QoK
Explosion tskes place when this asquation is not satlsfiled,
that 1s, when a stationary staste cannot exist. Frank-
Kemenesski [Acta Phys. Chem, URSS 10, 365 {1939)]

consideresd this typs of problem with

R = 4 exp(-E/kT)
where A Iz a temperabture independent factor. We shall
investigate the oftect of the tempsrature dependénce of
A as glven by the three models,

A very simples experimental arrangement, which in
principal should be subject to exact mathematical descrip-
tion,ls one in which a gample of the explosive 1s placed
In a temperature controlled bath or enviromment. Both the
explosive and the bath start out at the same temperature,
Because of internal reactlions, howsver, the explosive will
generate heat internally and its temperature will rise.
One may then adjust the tcmperature of the surrounding bath
8o that 1ts temperature rises simultaneously. In this way
ne heat 1s lost from the explosive. That 1s, the term

A 7ET 1s aqual to O and the reaction takes place under
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adiabatic condision. The hesat flow equation to be
golved then 1s simply
= QnkK

<
4"{:’
ki3

In this case the equatlion can be integrated and the
temperature of the exploaive determined as a funetion of
time up to detonation, The f{T) term in ¥ will yield
somewhat different results depending on the form of £{T).
One may then atbempt to compare these theoretical results
with experimental curves to determine the importance of
£{T),

At the time of this writlng we have not besn able
to find expevrimental data for this type of adlabatic
experiment. However, some theoretlical curves have been
caleulated and the results will be presented in the

next section,
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Steady Stale Theory ’

In the Frank-Ksmenetskl theory exploslon takes
place For those values of r and T for which the following

squation is satisgfled:
7 = QNe2 o(1) ewE/kT
A :

w = g MR
where E = alMo®/2

’? 1s a constant which depends on the gecmetrical shapse of
the sxplosive, r_is the linear dimension of it, N 1s the
number of reacting wolscules pevr unit volume, Q is the
heat of vesction and A is the thermal conductivity. In
the Frank-Kamenetskl case:
= ~ AT
g{T) = 1%.5 w__'fg.

In our Case 13

g(T) = _ 331 TO
2y 03/2(1.07%T)pd

In our Cuse 2%

g(T) = }B/;: To
I8 (| ,~8/Tyq3/2

In our Case 3:

The diffsrence among these four cases appears

when the explosive material becomes very small, We
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notice that in the Frank-Kamenetskl case there exlsts an
gbsolute crltical radius such that below thet radlus
sxplosion can never tske place even at high temperature.
The eritiecal radius is obtalned by solving for r, ;. in

the Frank-Kamenetski relationship
Y] . .
(’ e EF T /T
), Tﬂ

where TO =

which can bs written as

rﬁ

i

for the crlsical r»adius,

>

Thus for Frank-Kamensiskl cage, the absolute critiecal

r = .8 f &;ZE
c TV oNik

vhere e 1s the exponentlal, and ths covrr.sponding

radius 1s

femperature 1s

TC = Ty
As van be seen from the gensral expression for r®,
an appreeiable change of the critical radius r appears
when T becomes comparable to T,., By looking at a curve

ve can say that such change of r with T eccurs at about




T = T,/2.5., If we take this cvriterion we see from the
formuia for r® that the critical radius at such tempera-
ture is aboui 1.1 T which means 1f the change of
explosion temperature 1s observable, the absolute eritical
temperature is also observable,

In our cases one can obtain the absolute critical

radius in the same way, and one may verify that they

oegeur at
T = 2(T0+9) for Case 1
e .hz. ot ]
Te B(To 8) for Cage 2
TC S TO+G for Case 13

Since the T depeundence of the oritical radlus Is
determined primarily by the exponentlal function eTo/T,
the abov: criterion T = T,/2.5 in order to have an
appreclable change of v with temperature may be applled

in ally of the above cases also, Thus the radius at which

the explosion temperature echanges are approximately

1.9 v, for Case 1
1.1 T, for Case 2
1.4 r, for Case 3

Experimental results! show a change of oxplosion
temperature with the dimension of esxplosive, Huwmever, there
is no definite result for the absolute critical radius.

Thus our Case 1 1s favorable over other cases Inecluding the

original Frank-Kamenetskl case.

Dl

1. F. P, Bowden and A, C. McLaren, cited in p. 30’of.
Bowden and Yoffets "Fast Reactions in Solids", 1958,
60 o }
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joe

logetion:

The Adlabutic Heat Balsnce Equatlon is

dTl . %
5% ° K
where C = heat capacity/mole
Q = heat of decomposition/mols

For the three functions{}?(x), consldered in Seetion I,
¥ will be of the fomm

B = ar(T)e To/T

where @i
£01) ek

o m

Lee 8/T

and A involves the constants which vary'wfth the particular
model. For the present we shall regard A as determiﬁed
from sxperlimental data for a pariicular substance,

That 1ls, no attempt will be made to evaluate A from more
fundamentallproperties of the solid,.

Thas heal balance equatlon becomes
W b
) A
dT = ~éi~dt
Tl f(T) ty

Since £(T) 1s a slowly varying function compared

with elo/T, we shall, at present, carry out the integration

In T by treating f(T) as constant. Thus one obtains

=

£
TR - SR (I
£(T4) Ty £{T)T




Thus, Tor sach of the thrse cases one obtalns the

results:
Case L
[ Y —o/m To/T
fot, = _c mléiloe e/fl) GTO/TI - Ti(lag e/T)e 0/
QAlTO
N
Z(ﬂno)%63/2
Cagss 2
toty = 8 "1?13/2(1MB"B/T1)9T0/T1 o 13/2(126=0/T)oTo/T
QAE,TO
Ay, = jgnog -
(ne)?
Case 3
- ; T s . m
boty = el |73 (100" )0 0/ T2 | 3"/ T) 0/
Q;A;STO
by = Fal20g)F
o1
T, /T
When the Arrhenius equation, K = Ae 1s used

;

for ¥, the result is .
[TﬁeTO/Tl - TeeT°/é]

When the Eyring form, X = A“Te“To/T is used, one

t“tl =

C
KT,

obtalns

L0
featy = QC {?19 o/ M T3T°/T
A'qr,
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The following caleulation 1s an exploratory one
to determine the nature of the temperature versus fime
curve for the adiabatlic decomposition of a typical
explosive. In the calculatlon 1% is assumed that an.
initisl reaction rate constant is known 2, It will be
assumed that the reactlion rate constant 1s a funetion
only of the ftemperature and not of the time. One may
arbitrarily take the Arrhenius value of A for EDNA which
according to Cook ® is 1011"1o We will assume that this
valus of A is determined from the experimental isothermal
reaction rate constant at a teamperatnre of L27°K, The,

congtant ln ouvr casel, which we wlll call Ai is then

glven by A" = A(1-e~8/T") yp'3/2

where i ls the temperature at which A ls determined,
in this ease L27°K. One may theﬁiassume an adiabatic
reactlon starting from some arbitrgry Initial temperature,
say 373°K, and carry the calculation to 433°K. Results
of such a caleulatlon are shown in Figﬁre‘e for two
arbitrarily selected values of the Einsteln temperature
8 = 200°K, 6 = B00°K.

One may note that there is a 20-30 percent difference

In the predicted time from reaction initiation to

¢

2. "Isothermal Decompositipn of Explosives" by M, A,
Cook and M, Taylor Abegg, Industrial and Engineerin
Chemistry, 48, p. 1090, June 1956,

v
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detonation uaing the Arrheniﬁs veaction rate constant and

using ouf Case 1 reaction rate constant. The adoption

of a reaction rote constant determined from an lsothermal

experiment to describe the adlabatlc reaction may be

openn to questlion but the curves do glve one a qualitative

indication as to how the temperatuve time predietions will

behave for the various forms of the reactlon rate constant.
Using the oxperimental data for log K{(T) obtalned

by Cook (see Ref., 2) for NHhNOB’ an attompt was mads to

determine whether our Case 1 would fit the K(T) curve more

accurately than the simple Arrhenius reactlon rate constant.

It was found that no measureable Improvement was obtained

by introducing the factor T3/2(1~e°9/T)a Since the data

used in the calculatlon were taken dlrectly from the

graphs of Ref. ¢, 1t 1s possible thils calculation may

be improved by referrling to the o?iginal data,

Conclusions and Recommendatlons

The reaction rate theory developed in this chapter
predicts a higher function of the tamperature In addltlon
to the usual Arrhenius factor in describing solid state
reaction rate constants. Predictions of the theory
therefore differ from those made on the baslis of the
Arrhienius or Eyring theory.

It 1s recommended that further work be carrled out
in order to develop improved models for the function §(x)
defined Iin the text, Further applications also should be
made to rsaction dependent phenomensa,
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Chapter II1

ELTMINARY CALCULATIONS RELATING TO
EXPLOSION INDUCED BY A FALLING BODY

M. Mizushima
A shock wave can exclte the lattice vibrations,
If the meximum amplitude 1s x  the energy of an
oscillator per atom 1s %mange Thus in a simplified
model which assumes that v oscillators are exclited by

the same amount glves the total snergy as

- A 2R
W= S0 Mxo .

The number n must be proportional to the duration time
of the excltation divided by the veloclty of the sound wave
in the explesive. Suppose such shock wave is exclted by
& body which changes 1ts momentum from p to zero during
time At we have

M}.{ow “%X = _A'_X,x
A

t

- A d = 1 e 1
wR = _§ ; ZP = B = ZNkx,. = =NMo®x
M AG 2 0 2 °

T = 2q MX
?Ay

if wAt <1

If At iy much larger than 1/w, we have

,dp = 1 2
Kg =57 Mofx, if wAt>>1

as discussed In the appendix,
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One may ds the fraction of momentum which
i3 used to exclte the shock wave In the exploslive crystal.

If the colllslon is perfectly elastic

= 0,

If it is completely inelastice

my

A T

my iy

wher e my and mg; are masgsses of hitting body and body hitted,
respectively. In our case o must be very small since the
eollision 1s nearly elastic,

The lattice wave propagateswith the vel‘ocity of gound

u. The number of excited oselllatomn, ls thus

n = NAuAt
where N 1s the number of osclllators in the unit volume
and A 1s t he area vhich 1s hit by the external body.

From the preceding equations, we have

66 = (aP/2NauMoRx )i
n = (aPNAu/2Mw®x,)? )
ir Mt <{1/w, and

MG = oP/NAuMLx

=
i1

aP/Mwx
if At >D1/w
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For exsmple, if the hitting body has the same

density as the explosive and its velocity 1s v

aP/2NAuMx, =3 af v/u)(f/2xo)

where . 1s the thickness of the hitting body. If v 1s
100 em/sec, A 1s 1 cm, the above ratlo is about 10k
since w 1z about 105 em/sec X, 1s about 10~7 em. Thus
if « >710“l'” we have a wAt 21 case, but if 0 <1078 14
1s a wAt <1 case.

If we drop a masg m from the helght h the momentum
p 1s "
p + m{2gh)*

thus .
n= (mnl\]’Au/2M<:o"3x0)‘}(Zgh)l/lJr '
if WAt 2<¢1, and

n = (mn/wao)i(.?gh)i

if wat >>1.
Now the energy of this hititing body 1s mgh, so that

W = Bmgh
where B glves the fractlom of the emergy absorbed by the
shock wave., It is expected that B is about 0.5, Using

the above equations, one can obtaln .
Xg = Yh.i

where = é?.) 273 / um )1/3 gi
® Wiu _ '

!
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if wAt <1, 1If, on the other hand wit>D1,

Y = (B aw) (g/2)?
1f wbt >> 1.

Wo see easily that

At = 2'7/12{om/ﬁmmum3)1/3, 1f wAt €£1

it

A6 = Pofm/3MNAu,” 1f wAt >>1

Suppose h 4s 10 em, we have v = 100 cm/sec which gives
the previous example. Since w is about 1012 sec'l, a
should be about 10'"2"5 in order that X, 1s 10-T cm,
Prom the last equation above, we have At of Aabout
1070 gae. Thus we have a consistent pleture of wdt>>1
cage here,

Using xq = Yh* we obtain the reactlon rate K for

three cases consldered 1In the preceding chapter.

i- ’
Ky = 3¢ fZ = g1n- E?.} ] 12 b >h_

271 h
=0 1t h L h
s h
Ko = 32 -——-‘l-?— ifh>h
(h-hg) °
= 0 Ifheh
Ks = 34 iIfh >h
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wher e h = (EA/"Y)Z
o) o)

In Figure A the corresponding curves ars shown.

Since the veloclity of sound 1s independent of the
amplitude the above quantity essentlally gives the
nmimber of reactlons per unit volume. Exploslon will
take place if the reaction per unlt volume I1s above
certain value sothat the temperature of the explosive
can be above the explosion tenmperature.

The number of reactions which take place in unit

volume 1is
INK At

From our equations fov At we see that At 1s independent
of h in any cage, the heaight dependence of the above
number of reactiong per unit wolume ls given by the K part,
namely, by our equatioﬂs for K;, Xg, Kz for three bypicai
cases, respcectively.,

The sxploslon «=an oc:ur if the temperature reaches to
the exploslon temperature Tg by these reactions. Assuming
that we can neglect the heat conductlon during At the condi-

tion of explcsion is

g Mot 2 1 -7 ,
where @ iz the heat produced by each reaction, C is the
speclfic heat, T is the original temperature.

For a given slze of the explosive the explosion
temperature T, 1s glven as discussed in the preceding

chapter,
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The above formula glves the minlmum orlginal temperature
T necessary for explosion as a function of the height h
if we put out varlous expressions for K and for At into
it., The result can bse seen in Flgure B, These thres
cages can be easily distinguished from each other in
thls case. Such experiment will thus be a good test to
ses whlch asgsumption ls corrvect.

Conclusions and Recommendations

The reaction rate theory developed in this text
may be applied to the descriptvlon of explosion initiation
by a faliing body.

A preliminary and simplified treatment glven herein

should be emplifled so as to include further detall,
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h
Figure A. Reactlon rate es a functlon
of height for cases 1, 2, 3.
Te = — - -~

3

;ho b #
Plgure B. Minimum orlglinal temperature
necessary for explosion as a
function of helght. Curves 1,

2, 3 correspond to our cases
1, 3, and 3, respectlvely.
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Appendix
CALCULATION OF THE FORCE DUE TO SHOCK WAVE

We suppose a linear chain made by single kind of
atoms combined together with force constant mw®., If we
hit one end of this chaln the vibration of this atomle
system, which 1s nothing but a longitudinal sound wave
or lattice wave, will be excitad at that snd. The wave
will propagate with the sound velocity u and the Inter=
atomle distanes r at distance y measured from the end
willl experlsnce a dlsplacement x from lts equllibrium
value r, as

X = x, COS m(%-t) ‘
C= Cor X atom Land

I the excitation mechanism

1s such that it keeps pro- 7 l

-

duclng such lattice wave at

the end in the same way Flgure 1, Linear chain.
throughout a perlod At, we will have a region fvom the

end gurface to deptﬁﬁy = ut in which all a%oms are

excited and interatomic dlstances glven by the above

formula, but beyond that region no excitation.

1t

X = X, cos w(% - %) for y £ ut

0 for y > ut

X



The total displacement, namelj the change of the
length of this chain, at time t smaller than At will
be given-by Integrating the following expression. Using
notation N for the rumber of atoms in unit volume and
n for the total number of excited atoms after the time

interval A%, we obtaln the following result, since
n =  NAudt

The total displacement at t ia

ut %
x=NA | x dy = NA x_ f’ cosw{d -~ %)dy
4 u
= 8in wt ,
o Wit

The total force due to the displacemeont 1s

F = nMe®x, sin wt

The above total displacement x can be both positive and
negative. If the Impact ia so strong that the surface cannot
be pushed back, the negative value of x cannot exist. We
assume that each time x tries to bé negative a new wave 1is

generated at the surface so that x always stays positive.

x = nx, fs;n mt[

for example. In this cese we have

F = nmzx lsin (01;‘
0 W

N

One sueh wave is



The average total force over the duration time At 1s

<F‘>Av JF' 4%

If wdt <<1 we have for hoth cases, .that is for
Fuvisin wt and Fu |sin wt |

7 Ny &
F -Z.Mm.xo

o\
while if wAt>>1 we have

i-cos WAt . an*ggn
{wat )2 {wat)®

PPy = nMwlxg

for the sin wt cass and

in the case of lsin wti.,

If we take P for the sip wt case, ws obtaln

P = NAquo
which means x, 1s about 10"“LF em under ovdinary experimental
setup. Obviously X, must be about 10*7 em 1in our plcture.
Thersfore, we do not tako <F> correogponding to Few gin ot
In this article but take <F> corresponding to Fu sin wt

instead,
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Chsover IV

THEORY OF DIELECTRIC CONSTANT AND
LOSS TANGENT FOR A MEDIUM CONTAINING IMPURITIES

Donald G. Burkhard

In the final report for Contract DA-UL-009-ENG-3628, 1959
we reviewed various atomic and molecular mechanisms which
give rise to a frequency dependent dielectric constant
and loss tangent.

In the same rveport we calculated the frequencly
dependent dielectric constant and loss Tangent for a
moedium containing impurity centers. The prineipal
motivation for investigating thls sltuation lles in the
fact that newly forﬁed pure" lead azide decomposes with
time. Therefore, if dielectric and loss Lungent wmeasurs-
ments are made on a specimen at different times, one is
not necessarlly deallng with a pure homogenscus specimen.
When attempting to interpret microwdve measurements, 1%
is therefore of importance to know what type of frequency
dependent behavlior to expect aus a result of the presence
of lmpurlties. The measured spectrum willl, in addltion
to the impurity effect, have superimposed on it the
characteristics of the molecular polarxization assoclatsd
wlth the pure medium and with the Impurity centers.

These eoffects may be incorporated into our general
formulas for particular cases,

As we shall see 1n the pext section, the exact
caleulation of the dielectrlc properties of an impure

medium is analytleally rather complicated. One may
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substantially simplify the calculation, howsvsw, by using
Lorentzts procedure for calculating the dlelectric prop-
erties of a medium containing polarizable atoms and/or
melecules. The procedure, as 1s well known, is to remove
an imaginary sphere from the medium. The fleld at the
center of the sphere and assoclated with the matter outaside
of the sphere is then computed by calculating the fleld
asgoclated with the polarization of the sphere., To

obtaln the total effective flold at the center of the
aphere one then replaces the matter In the sphere and
calculates the local fleld assoclated with the indlvidual
charges of the matter in tho sphere, Knowling the total
effective field at an atom site, one may then express

the atomic polarizability in terms of the external fileld
and finally obtain an expression for the complex dielectric
constant of the medium,

In a similar manner, the Lorentz sphere procedurs
was used tno calculate the effective dlelectric propertles
of & medium containing & cubical array of Impurity
centers. A requirement for accuracy of the calculation,
however, is that the separatlion of impurity spheres be
appreclably greater than thelr diameters. It is not
clsar just what the 1imits of accuracy of this model are,
It was therefore considered desirable to attempt to solve

the problem exactly by solving Laplace?!s equation for a
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homogeneous medium containing a cublic array of dielectrle
apheres, I% waz found, after dsveloplng the above deg-
cribed Lorentz-type treatment that Rayleilgh had calculated
the effective conductivity of a medium containing a cubilc
array c¢f conducting spheres. In thls report we generalize
Raylelpghvs results in order %o calculate the complex
dlelectrie behavior of such a medium. The move esxact

but also more compllcated results obtalned by using
Rayleights procedure are then compared with ours in order
to determine the range of applleabllity of the 1afteru
That is, we compare wlth the more accurate treatment in
order to determine the maximum ratio of dlameter of
impurity to separvation of Impurlity in order for our
gimplified procedure to yield accurate results,

We now summarize the procedure for caleulating the
complex dlelectric constant for a homogensous medium
contalning a cubic array of dlelectric impurities, This
will be done first by followlng Lorentzis procedure
and wlll then be carrled out by generallzing Rayleighss
method. In & later sectlon, the effective dielectrie
constant and loss tangent for a compound medium will be
shown graphlcally as a function of frequency for varlous
percentages of "impurity" constant and for variocus values
of the dlelectric constant and loss tangent for the

medium and for the impurities,
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Lovertz Procedure

£11ow the supporting medium to play the role of
free space, That 1s, the supporting medlum will be

deseribasd by the dilelectrlic constant

9
80 00

*=8K*280‘Kf,°~5?)
= [g] m«‘ii-:gfi

We now treat the imbedded spheres as "atoms" in
the supporting medium,

The Lorentz sphere is shown dotted in Flgure 1. If
the imbedded spherss form a cublc or random arvay of
dipolss parallel %o the field then the internal 7ield
of the spheres produces no sffect. In this pleture
we now want to correlate eg and O for the composite
medium with bthe macroscople properiiesz of the spheres
and the gupporting medium. The atomic polarization
aff'ects usually put into the Clausiug-lMosottl equation
now are thoss sssoclated wilth the lmbsdded spheres. The
three basic equations which lead to the Clausius-Mogotti

squation are now

)
1

SR 1 - ¢ *
= e Zie E,

P=n eé*u E

0 eff

el
i}

P
b
eff Eo 3g it
o

-
FAS|
i

S |




-
- - o
.

- i
— 7
~ ~ t
~
<
e

Flgure 1, Inbedded spheres XX(K.,v” ) in
dlelectric KX(K!,dl ) DBtted |
Line shiows LOorsftz sphere,
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£ the coverall wmedlum is then

% : T T T
Y5 being was eilevilve Aof whe 3

the 0oy a medium consisting of the imbedded dlslectric

spheyos in ike "space” of the supporting medium. o is
the polariznbility of the individual spheres in the
gupporting rnedium, The above egquations yleld the

Claus uvag-Mocsottl result

y A L S

1=n a/3
2“/.;". o K:E’ n “
& s
3
K* = Lo,
e e
80
1% g, ;
Thus g o= e, (1 B L

Ten o/3

Cones W) o oma AL X ny
tog, - Ju,) = (meo JEO) (L + - )

Ton a/3

a4 juell = AT+ jwel) (14 D
© © e © 1l=n o/3
or
o T + 2/3
T8 gux, e (0 x o ) LF.2/3 800
RO ) & O
0 1~ ng a/3

To calceulate @ one must cealculate the dlpole moment

associated with one of the imbedded spheres. Thiz is
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done Dy solving foir the pstential outside of a

conducting uphere 1o an 1..finite conducting dlelectric

mediv .,

kD

fhe povential is

/ '
i R4 ’
'x/ ¥ 3 - B p

q; SR et S eie

o . Ty /
\.2{; ) - ﬁ:a l'r/

)
S g

= Byppz

Fiyrat term contributos o poiential which is the same

ag that of ¢ dipole

where
Sl i 17 A Ty L. jeo 0/:'0 2 Ay
C . 0w ST Joor g e =l (,:_ ¢ J(x)KO)
‘0
..* -t ! ' 3G s - g : 2 [ jF‘O Oms .
B v 360/ w J/w 19 jmao) - Tmm.(ﬁm bW )
w fn ;
]
el v K
3 0 3
B “oke

where K, and K, are the dlelectrie conutants for the

sphere and ibe wadlum, reaspeciively. €, 13 a constant,
4

107/ lue® , in MES univas; C is She velocity of 1ight in

free gpace 1o mebers per zecond,

¥ Crapter: "Theory of the Dislentrie Constant™ by D. G,
Burihard in Final Reporv, Contract DA-)-009-ENG-3628,
July 1959,
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e - S o
Lyt 804 v Y/ e, are
for spherec and medium. Tre coeffleicont of B/ i3 then the

polarizabiiity "« cf our macroscoplc spheres.

%, s
1 - ’;O/SS 3
a

= ‘p = .;g.‘:‘-m.-.“r.—mtm
1+ 2 ¢ /e
VA

[y

Pusting the expressiovons for i«o and &’

52

in the

7]

squavion foer # and Jetting

K=k + 2 and K' =K - X_,
& o} & 0

one obualn:
T
i Q,...m:u:dlgﬂg-‘ a.:l'
97+ joK
(7 we now put this expression for ¢ in the Clausiug-

g0t il rquation, one has:

0:2 o JuK, (%. oK) Tv (/3 B+ _jolk + (/3K B]
o G T (L/F B+ jelk - (/"B

there B nal = Eﬁ-nvu v I8 the volume of a single

lmpur ity sphare 2nd n s the nunber of such sphsres per

wnlt volurme., 1f one now equates real and imaglinary

> b3 the following expressions are obtalned for the

[oges

g

affeciive dislectriec constant, Key and conductivity -

e
L

the complex dielectric constania



oi uhie componitz wadlum

g

e

" P = N S i3 0. Z sl PR £ o’.o ] ¢
&O[Kr”+w*K3}+§g}u TR KK ;B amf +0¥K ®)B J+;~¢TK T K)

,'10
0" ® + 0FE® - % g ¢ W*KK') Bt % (0'® + o*K'2)B
To P RO R 2, ., s i g (S NN

e e LKT”4m£K~)+§5:@ +we KK }Bdski BLn®K 2B ;»w“Ko&TK -0 KJ}B
e o

T ew ammanecucasut oy et xzzzer

>

a7 F 4 PKE . ’2 frat+ o*KK')B + %e«*"a + RK'®)pe

in the sbove eguatlorns one now hasg KF andéré expressed

n terms of F_.,J7 ., ¥ ,<7 , B, w;
)

o2 thy

K, *" Ko Ko, 95, ¥y.94, B, @)
T° o By, Ty, Ky, T, B, )

O

Rayleigh Procedures

Following is a generalization of Rayleigh's procedureql
.n principle, there is no reatriction on the size of the
!mpurlty spheres, The results, howsver, are expressed
in termg of & gerles crpanslion so that one must be careful
1o carry a sufficlent number of terms for adequate

Lonvargance.

B——— i

-~ Phllosophical Magazine, Vol. 33-34 (1892) pp., 481-502.
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Consider the medium as divided into an array of
rectangular units of dimensions e, P, and ¥ in the x, ¥,

and z directions, respectively. See Flgure 2

elle}
A Q D
O C

¢

6‘@0

/ﬁ'yozre i&

If one takes the center of one of the cylinders P as

origin of polar coordinates, the potential external to the
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cylinder may be expanded in the serles

outside V= A  + (Ayr + Bur )Yy + ooo + (Apr" + Bnr°n“1)Yn%-,--
inside V' = C, + Ci¥yr + °°° + cnynrn 4 oo
Yn denotes the spherical surface harmonic of order n, !

Boundary conditions on the surface of the sphere whers

r 2 a8 are:

vey', ROl . av
dn dn

Y denotes the ratio of the complex dielsctric constant
of the sphere to the complex dlelectric constant of the

m@dium a

joa &

@

I8
1

o k |

To apply boundary conditions, one has

av . _ 25 . n-1 _ {n+l
"a"ﬁ (Al rB_)Y1 + + nAnr b ;—vn:-él Blen + ?vo

wdvv = L n“‘l LN
- 2Jcy, + YnC Y r +

Equating coefficients of the Y's for r = a




lLikewlss from V = V

B
A, +*~]-;: Ci
pad
Ar s B{]___::;
' a2ntl

From which
. l- 1/ 2ntl
A,

: A
1+¥+1, n

n

We must now consider the limitatlons to be imposed

upon Ynu In gensral,

g @
Y o= Z n(Hscos sp + K sin sg), oo
950

where

\9 an & - - - ’
é% = 51n56(cos” g - {p-g)(n-g=1) cos™" 872 4+ s00)
2(2n-1)

B being supposed to be measured from the axls of x
{parallel to o) and o frox the plane of xz. In the
present application gymmeftry requires that s should be
even, and that Y, (except when n = 0) should be reversed
when {m-8) 1s written for ©. Hence even values of n are

to be excluded altogether. Further, no sines of s¢ are
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admissible., Thus we may take

Yl..‘“.coSe’ 0o o ad e o0
Yo = co0s30 - % cos8 + H, sin®*0 cosd cos 2¢,
Y. = cosse - 10 00330 + 2 cos®

5 9 21

+ Ly 5in®0 {cos30 - L cosb) cos 2¢
3
+ L)+ sinue cos6 cos Lo ceove

In the case where P = Y symmetry further requires that

He = 0, Ly = 0

One may now apply Greenta theorem:

\fu——dv vdU) ds = 0

to the surface of the region between the rectangle ABCD
and the sphere P, Within this reglon V satisfiles

Laplacets equation, as slso will U, i1f we take

U=x=1r cosb

The applied fleld 1s taken &z parallel to AD, BC,

thus sidss DC and AB are equipotential. Over the sides




A 14
a V s
-

BC, AD, p» g5 Ppoth vanish. On CD, %% represents

ton

the field strength.

g = I L d

(¢+ JuKge)  JoegKe

where J 1s current density and

b g8 )
Ko Ko = Ioo
o

sy

. dn

'[_QEX—-j!aq The value of remalndsr of the integral

Thersforse ds over CD, AB represents

*

Jwe Ko
-J{‘%% ds, over the same lines is ~BYV, where V; is
the fall in potential corresponding to one rectangle,

as between CD and AB.

On the spherical part of the contour over which Greents
theorem 1s to bhe applied

U = a coab, . . QE = w c0o8b .
dn dr
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A, + {AyatBya®)Yy + (Aga3+Bya~h)y, + «oo

Vv =
-gy- DL g—‘Y- i = o (Alv’eBlamB)Yl - (3A3a3“h.Bsa"5)Y3° oo
n ar | =g

Substituting these expressions into Greents theorem

EQUQX )d JﬂUﬁEds “‘jnvggds

L j/(a COSe) [oi(Al-»2Bla°°3)Y1~( 3A3a3~b,Baa‘“5)Y5 =0 o]

yields

X{a® sinG a6 dg) - ’{yfg[Ao+(A1a+B1a“3)Y1+(Aaa3+85a“h)Y5+°°°]
X (-cos6){a2® «in® 40 d¢)

Inserting the appropriamte expansions for ¥;, ¥,, °°° gives

2
ﬁU%‘.’. - vdU)gs = -a3(4;-2Bya=3) f(cose) sind cosf de dg
n dn 20 o o Yo

—a3(3Aaa”wl¢Baa”5) (00839 - .3. cos@+Hysin®0co08Bcos29)
Q 27{ w

Xsin® cos® @8 dp - +oo + a®A jfsine ¢08€ 46 do
2%
+a¥ (A a+B;a72) AJi(cose) sin® cos® d9 do
-l ¥
+a®(Aza3+Bga" ) 5(00539 - -é- cosO+Hyos1n®0 cosb cos2g)

X 3in8 cosd d@ dg + °°°°

g0




Simplifying,
(2 - v80a0 = -(sndezmy) Ta-(3885-4Bea®) (1, 3 Ta+HeTa)

- 0800 *’aonIo*'(AlaB"‘B;_)I; +(AaaS+B3a~2)(Ia“ % 11+HQIQ)+°°'

27
where
Io 2 2ind cogd 46 do = 0
N
I, =§;‘jn (cos8) sind cosd db dg = 2(2n) = %?
s Yo 3
PL Y
Is =Uf {sin®06 cosb cos2¢p) sind cosd db dp =0
2” 3
I, = jiwfr(ccs 8) sinb cos® 46 de = &(2q) = Lx
5 o 5 5
etc,
Thus

5'(3.3{. - V-g%)ds = w %’E(AlaizBl)w(.l% - % . L%s)(%aas-hBaa””)

- .qu+(A1a3+Bl)§E#(%£ - %,0 gg)(3Aaa5_hBSa-ﬂ)+ ooq
3 3

S

= limB,

Although only terms up to Y5 were used above, 1t ls seen
that integrals of the type cY (QOse)in(sine de de) will
vanish for n = 3,5,7,+°s+ due to the particular
numerical coefficients on powers of cosb in ¥, and

also to terms which contain cos ke, k = 2,l,6%c0«

rie g
since‘l: cos ko dp = 0, k = 2,l},6%+00
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IBYo L Byy, + LB, = 0

The potential V at any point may be regarded as due
to external sources at infinity (by which the flow is
caused) and to wultiple sourcss situated on the axes of
the c¢ylinders. The first part may be denoted by-Ex.

In considerling the smecond 1t will conduce to clearness
if we imagine the {infinite) region occupled by the
eylinders to have a rectangular boundary parallel to

¢ and B, Even then the manner in which the infinite
system of sources Is o be taken into account wlll depend
upon the shape of the rectangle. The simplest case,
whieh suffices for our purpose, ls when we supposeﬁthe
rectangular boundary to be extended infinitely more
parallel to ¢ than to B. It 1s then evident that the
perlodic difference V; may be reckoned as due entirely
to-BEx, and equated to-Ec. For the difference due to the
gources upon the axes will be equivalent to the addition
of one extra column at + x, and the removal of one at

- ot , and In the case supposed such a transferemce 1s

immaterial.” Thus

V1=='Ea

¥ It would be otherwise if the infinite rectangle were
supposed to be of another shape,; s.g. to be square.

92




Flacing V, = Eo in the above result obtained by use of

Greents theorem, one obtains

4nB,
oBYE

J- ”»
g~ [1~ ] jwe K

E is the anplled fleld so that % is Just the complex
dislsctric constant of the mediﬁma For w = 0 it is
Just the specific conductivity In g direction parallel
to ¢ of the compound medium. It now remalns to connect
E with B;.

Following Rayleigh we now calculate B, E approximately,
limiting the treatment, for the sake of simplieity %o
the case of cubic order, that 1s where o = 8 = ¥,

One may now obtaln a rslationship between B, and E
by equating two forms of the potential for a point x, y
near P In appropriate limiting cases., For example, the

potential at P due to multiple sources Q and source

~Ex at infinity 1is

vV = ZET‘ EE: (A r'D 4+ B rvn"l)‘fv - Bx,
5’7,; n n n n

Here the r‘’ and the arguments of the spher ical harmonics
are referred tc coordinate system located at-sach Q.

5, 7,_% denote the origin of the Qts. If the Q gpurces
are allowed to recede to a great distance only the terms

in B will contribute. The above expression does not include
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the effect of P itself. On the other hand, 1f the
sphers P 1s excluded {if its radius goes to zerc) the
potential at xy 1s glven by our original expression
with the terms in B absent., Thus another form for the

potential is
A+ Ayr¥y + AgriVg + eoo
Equating the two forms, one has

Ag + Byx + Ag{x3 = 3 xr?) + oo,

in which
x' = x-8 ' =yl 2 = ozes

where ﬁi 71,5 are the coordinates of Q referred toc P,
Honce by differentiating the left side orce with respect
to x then getting x =y = 2 = 0, A; - H 1s obtalned and

i1s equated to the corresponding expression on the right
slde. In similar fashion, differentiatling the left side
thrice with respect to x then setting x = y = =z = 0 ylelds
BEAa, which 1s equated to the corresponding expression

on the rlight. Thus

x'3. %xofvs
A, - H= d_ JB,5 X + B3 +
s Tx' 1 ;,TB. » 21 '? LI

r

x=y=2z=0




At the origin, x = y = z = 0 so that gx — e .._ and

. 3. %x? ig "
Al"HaBlz'*a'j,<q3)+ Ew'é? rv? 4 eao

Since x' = :.-j, gl o= -’? s 2V = ~3’ at the origin, so

- N - 4
also is r'® ‘—‘tj” +'7“ + S' = AR and thus

- 3.‘....) .9 _.z) LeprFaas _ R-3z"
| T 06 A5

/
If we let 4 = i?/’/ﬁ, then

by (i) T g floeate g

where 7Py (/(), 1s the sscond order Legendre polynomial, Also

3 IS 3 '
- 4 qu b i) B iﬁiﬁ)w
d.5 rvT / .a}:k (07‘- A

PII3ge- dprres) 1P (sl dpepy

/ﬂlh

- L 355"' . 30£— + 3| = - B (25/}‘-101(94-*1
N N A

8Py (41 1

5

tH
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where Ph£;0 is the forth order Legendre polynomial.

Hence

Al = H = "’213] Zlo BPQ(,ﬂ) = BB EP Sphyl) b o900

In similar fashion:

A ¢ P22
3 o ex'r
304, * |92 JB, 3 21+ B, 3 B + uaniE
d)L" . r\?B r??

Again at the origin, ___ — Qé_ so that

g3 f.

ped) M el 1 5 (%)

r /33#-5&/"; /8Py () ) P, (
= 15 w4 ™ w_..b—__l.(_ "‘“')-J- /#)
[ AN ( 5«‘5/ Zgﬁr

(VB el B %345”%)
dx3 i d}3( /07

= [ geepT L oyslis9 2 p-5
[ 657" - 15°p 2P

while

d¥®
6 Lo
= -7 o4 + 105 E*
= - 31031 4 . 3156 F. + 105 FX . ©)
£
= ﬁg Péi/l{)
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Hence

Ay = -jB, z,ﬂ“Sph(ﬂ‘; - 885 227 TR (0 « oo

A similar procedurs wlll glve Ag, A7, etc. Each of

the gbove summations 1s over all the other spheres CQ,
l.e., over all coordinates 5, ‘7, 7 of the form e,

ma, hao whare,f,nu n are positlve and negetive integers
except 0, 0, 0, Let these sums be denoted by Sg, Sh’

etc. so that

enel . ~n=l
z/ Polt) = e s,

Sinee A_ = B_[L¥¥41/n) 1 due to the boundary
o O\ 1.2 /a0l
condltions, we have the following:

Ay = By {(1+P+ ) = QhBl(C’hSSh) _SBB(U"?SG) « sovve

{1-2) al
and thus
- (1+241) - 8 -5
Ay = B = By 25=—=L L Hom w2By (6738,) = 2 Bgle 08, ) = ceos
or .

. . . N al
H= Bl(% ;}3 + 2B u 339 * g ¢ SSLI. ~4B, 0 53 (L-2)a

1f we neglect the last term in the A, expansion.

G
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Therefore

3 ) 3 1 10 - ).
Ha” . 2+ . ,fa)\ 32 fa 1 cooo
B 22 of5) s - # (%) (Ey)sﬁ )

3

Finally, the specific conductivity 1is

LnB, - 3
1 = ~ 1 - “_AEE__ (where e=B=Y for simplicity)

By

Lna3/e3
%—:%+ 2(%)332 . %2(%)10(522}/) Sﬁ + <o
3

It romains %o caleculate the sums Sn° For the first

sum S5, we have
Som 3P ral) w3 Loty BB 1 (;)
2p 25 B2

It has been assumed that the extension of the medium
1s infinitely more parallel %o the ¢ direction than
either B or ¥ so the space to be summed over is a
rectangle bounded by ¥ = Y oo, f’ﬁ ty, ]ﬁﬂ te where v
will ultimately increase without 1imit.

Conslder flrst the space bounded by j'=’7’£3== tv,

a cube centered on the origin. Since the spheres Q

2
are cubically symmetric, 2 I=3 7..‘1 = Z E% so that
2 t ] .

/s s

Sg = 3 = 0 over thls space,

N



Consider next the space bounded by 3'*" *v,

S‘ﬂ t o> /Z,’EBE %v. We assume that in this space,

fis sufficliently large so that the summation can be

replaced by an integral. Hence

w5 @) [ 53

where j"is integrated from -~ @ to «v and +v %o + oo

Hence }-‘%Q will be obtained by integrating from +v to + oo,

fﬁfﬁwmﬁﬁrwz

~v dyd¥y . 7 f
jj 372 " Y 172 dj |
{ vE+HELGR ) (y2+T %) (yEh z.,.?z) ‘

7 PV R A

4
= 2y® a%
(vb43%) (2vRag )1/ 2

v
LetS’ = v tand, then d} = v sec®048, v""+5* = y® gec®0,

(2v“+5")1/2 = v(2+tan“e)1/2,3 =Y e @ = E

Sﬂ -y —20 = «ﬁ so that the above integral becomes

246
v 2+tan®o
/]
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Let x = sin®, then dx = cos8 dO, tan*o = Eﬁi“ ,
-3

g.,%.@x:w%ﬁ and we have

P

- 5 ax n~ 2T
Sp 2 —. 2 = 2%
&) {2-x= (; ) 3

=~ Yex e
Finally if we let p = Aﬁ%i and neglect the term

10 a-
containing (%) as a first approximation to the

speclific conductivity, we obtailn

o4/ - 2p

1 - LB, 1. 3p . I
=l ].._ G T D

1-7; \Lmtj 13 1>

In ordsr to carry on the approximatlon we must
calculate SLL’ etc., An approximate value of Su may

be calculated by direct summation from the formula

| 35530y 3ol
g

We may 1imit ourselves to the conslderation of positive

Sl =

and zerc values of g, IZ ,}’ . Every term for whlch
j, 75 5’, are finite isrepeated in each oetant, that is
B8 times. If onc of the thres coordinates vanish, the

repetition 1s fourfold, ard if two vanish, twofold,.
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The following table contains the result for all
points which lie within ® = 18. This repetition in the
case, for example, of,@2 = Q represents two kinds of

composlition. In the first

1

pﬂ 22.}.28.}.12&99

and in the second
P*E = 3® 4 0% + 0+ = 9,

The success of the approximatlon is favored by the fact
that P vanlishes when integrated over the complete
sphere, so that the sum required 1s only a kind of
resldue depending upon the dlscontinuity of the
summatlion,

The result is

Sh:‘BJI csvooevsson

£l ¢
0,0,1 1 +3 ,5000 0,0,3 9 +.01lly |
0,1,1 2 - 3094 | 0,1,3 10 | +.0243
1,1,1 3 - 1996 1,1,3{ 11 | +.0075
0,0,2 L |+ 094 2,2,2 12 ~.0062
0,1,2 5 + 2501 0,2,3 13 - 0015
,1,2y 6 | - .0397 | 1,2,3| 14 | -.0095
0,2,2 8 | - .0097 | 0,0, | 16 | +.003)4
1,2,2| 9 | -.0277 | 2,2,3 | 17 | -.0061 |
' 0,047} 17 | +.c085 o
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Ag indicated earlier the preceding several pages for

s

evaluating E/B; follow Rayleigh. Details have bessn added.
Referring to our formula for complex dielectric

constant (taking a = 8 = ¥)
' o= [1 - n_"ﬁln_] K*
© 3 0
g° E/By
One may now insert In the abovs the followlng expression
for E/BJ_

(1-eg/ey)(3.11)% 10

23§/%§+1—23§/§e§ 10

- ;}."- 4%
%_ o 1| 1ree /e§ . bx a3 _ %5
N R I

*
We now wlsh to compare the above expression for Kg
wlth our form for Kz, that is with the Lorentz method
3*
for obtainlng K . In the latter case we have {(in ¢ g s)

units

[

f e 1 4 Lmn o’ Ithmnger 2/3

1-lnn g Y3 1-lmnge'/3

o

In tlils case o'

1s the polarizabllity of an impurity
sphere.
First note that if hﬁnoot/3 is much less than unity

one can write the above

3
K ¥ 1+ hnn ¢’
e o
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Also note that this i1s the form ons would obtain
for K: if it 1s assumed that the local field is equal
to the external field.* That 1s, 1t ig the form of K:
when one neglects the effect of the spheres on each
other.

g0 = L eﬁ/eg a3
1+ 2e */ek
Putting this in our approximate expreasion for K:, one

has 5 %
lwem&&

3

Ke <L+ hﬂnoa3

1+ 2e TR
0 8

If one approximates E/B, by

%
%‘2-__1._260,’es+ 1
1 3
a’ | g¥fe, = 1

P - 4.
Also P= noa‘Eeff nouE
if local fleld Eeff is equal to applied fleld E.
Therefore

X =no

and

K=1+ULaX=1+ lnn o
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In the Rayleigh general result

K = [1 - g

it

° a3E /B,
one has
g%
K* = 1 + LLTIHB 1l - EQ/ES
e a3 |1+ 2e*/e*
0" “s
;% = ng = number of spheres per unit volume. Thus
u

employing the first texrm only in the Raylelgh expansion
is squlvalent to the Lorentz treatment when the local
electric fisld is squal to tho oxtzrnal applled fleld.
Since thls 1s not true in our case, the Rayleigh result
using only the first term in the E/B; expansion results
in a poor approximation.

Now examine the effect of including the second term
in B/By. The first term is simply the reciprocal of the
polarizability, o', of & single Impurity sphers. Thus

E/Bl=[-.l.+-lﬂt-n-9.]
ol 3
Putting this 1n the Raylelgh expression for K:

&
nn n
SR e ik
mm
_L 4 M 1 . bmnge’
of 3 3

o0k




This is our general result using the Lorentz procedure.

Thus one can say that the inclusion of the first‘two
terms in the expansion for E/B, in the Rayleigh méthod
is equivalent to the Lorentz procedure. The third term
in Raylelghis procedure will represent the Iimprovement
to be gained from the more exact procedure, In view

of ths above results, it 1s now convenient %o write

E/B, as follows

-
B/B = o Lok bmmg 32 o' d3aue
] " * .3
¢ 3 A1073 § . Yt 1
° 3(1425§/8§)J
b
o

ar

ol 3 "3

i

Lan e

stands for the third corder corrvection terms.

Then the Rayleigh Ki may be written

K':' =1 - }.mtni o1 Lmznov .
mn an
-0 e 1 - =591 - el

Thus ths Rayleigh trocatment 1s equivalent to writing for
the effective fleld (in cgs)

E = E, + YP

eff

105



where . v = .lﬂ.t(13‘“ ¢)

rather than simply ¥ = %$,

Since there 1ls no advantage in displaying the
polarizability a' in ¢, we write ¢ as Tollows for
computational purposes.
alo 1
¢10 noa3

e = 32(3,11)% L= eo/es
(1+h£ﬁ/3e:)

10
2}2 = a3 /3 = (n a3)10/3 = Blo/3
10 "( 3 o

3INaV '
where B = noa3 = —Ein « v is the volume of a single

impurity sphere and ng,, as before, the number of such

spheres per unlt volume,

1

e # | 3 /3
_].'.._82_/:?_’.5_. 81/3 = 2.188 1‘90/25* (nov)7/3

c = 6,190 — =
1+hey [3ek 1+he f3eg

From this result it 1s clear that the accuracy of the
Lorentz-type treatment depends not only on the fractional
volume occupled by impurity spheres but 1t also depends
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on the ratio of the medium to impurlity dielsctric
propertlies as was to be expected,

We examine ¢ for the limiting cases of a pure
dielectric impurity (0"= C) and for a pure conducting
Impurity.

Dielectric case

1=K /K 1-K 3
6 = 61,90| ——2 3| 573 . 5 g8 LoKo/Ks (nov)7/‘
1+hK, /3K 1+AKO/3KS
Conducting spheres
1-0 /T / T
¢ = 61.90| -l | 5773 - 5 1gp) TolT | )77
1+HT, /307, 1+407 /o,

Intermediate cases must be examined by equating
real and Imaginary parts of our gensral expression for
ng Results wlll also be frequency dependent.
Expressions for Ke and V; must then be compared with
those obtalined from the Lorentz~type treatment,

We shall use the criterion that ¢ must be less
than0.1. Flgures 3 and l; show KO/Ks as a function of
the fractional volume n, v for ¢ = ~0.1 and ¢ = +0,1
respectively. Note that a large variation of KO/K8
(2 to greater than 10) 1s permitted when the impurity
content 1s as great as 2/5 of the volume of the sample.
Similarly, when K /K 1s less than 0.l fractional volume
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C= +0.1

W~ |&c

1.0

—— i BT SR vy

Q.6
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No 1V

Figure 4. K /K. as a function of fractional volume
nyv Tor ¢ = +0.1,
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of the allowable impur.ty may range as high as 20 to Lo
percent for the Lorentz model to remaln valid. Thus one

can econclude that for reasonable ratlos of the dielsctric
properties of the sustalining medlum to the impurity
medlum, ths Lorentz model may be applied with considerable
accuracy even though the fractional velume of impurity
becomes rather large, that 1s,of the order of 20 %o L0
percent, |

Conclusions and Recommendaiions

The dlelectrlc propertles of a medium are sensitive
in the microwave region to the impurity content. If
time and interest permits; it would be worthwhile to
develop the type of model described 1n this chapter so
as to lnelude radlative effects which will occur at the
very high frequencles. In the event that further determin
ations are made of the dielectric constant and loss tangent
of lead azlde 1n the microwave region, one should look for
the characteristic behavior displayed by the curves in
this chapter In order to determine whether impurity

effects may be significant.

110



Unseposy v
CATOATI AN 09 00 W TReeR o TROVERR YA a4
HEDIOM WHLCH CONYAINS S2HBRICAYT DIEIECTRLC PARD LU,
D, I, Schwaln
Consider a wiform dleleoctvric wmodium, horeafter desimnated

a8 the support madiom and denossd by a subseyipt o * which
gonsains a cubical ov random array of tmbeddod sphericeal particles,
heroafter dostsnated as the ilmpurlity medium and denotad by the
subgeript g The svpport medium will be characterized by a

3
dlelectric constant K, and a conduciivivy O, while the impurity

trie conatant K, and a

%
o]

modtum will be charactarizod by a dlel
conductivisy O . 1t 1s desired to obbaln the resuitant behavior
of the combined medis which can bes characterized by soma "offectivel
dtelectric conateni K, and sows "alfoctive™ conductivity 0 .

Tn o vapor on thoe TARORY O PHY DYRLAECTRIG CONUTANT, D. 6,
Burkhard has derivad an ontendsd vorsion of tho ususl Clauslug-
Moaottl cquation. Wo suwsmarlze that derivation hera. Thres
basic equaitiony of zlaciromasneiic theory lead to the Clmusiusg-

Hosobtl xegult. They aro

. P e, g
T"" B (:.':,.5 ’)(’(: [’."c;
) e
P o= on, 6 ol
. P

=y 1 Ev3

/ W b
whers €, = G€,K, is tho complex pormittivity of the support

medium, :Ze“ 18 the effective complex susceptiblils iy, GL 18
the polarisability of & gpherical fwmpurity, and EZQ;; 1= the loecel
f1eld ‘n the vicinity of an fmourlty sphers. Tho Eie$; is
obtained by calculeting thse L1sld Tn a spherical cavity dus to the

polarization of the support wedium and the field dus te other

tmpurity spheres in the cavity. Sinee 1% 18 sssumed that the
LY




impurity spheres form efther a cubic or random array, this latcer

f30ld vanishes.

Elimination of P ’ Eo , and E—cq. yieldse

1:* N, oL
¢ | — < Moot
However, to complete the derivation ws need to use the conventional

relations that exist between ths ordinary dielectric constant and

conductivity and the complex dialectric constant, namely

Xt = k-1

® & ‘.
€ e, = (e }_@) (e-jZ )
Thus we obtain .
% é’* |4 Nook
= i

Se c | - T)ocl/g

¢ E = (-5 [+ 5 Mol

[ N o (3 o I— —;—')’)agd

o T, [+ €m,el

b3 + jwk, = (—;— + ) Ko) i g

€o Sc I - BWOG{

Now 4t remains to calculate the o  of one of the imbedded
spheres to complete the derivation,

Assume that ths volume losding 4s small so that the problem
of finding o reduces approximately to the problem of
determining o for a single dielectric sphere in an infinite

medium. ITn this case, solution of Laplace's equation yields for
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the potential outcs’i de 1‘he sphar:s
/ 3

o & -
‘ FEY € 3 ' Eeﬂ z
.;26 + €5 T
which conslsts of a dipole term and a uniform fleld term. The
divole potential I1s g = P PC‘”G
dipols T3 r?
so that the 'ipole moment 1s thus
PR A 3
Cg 7 %o :
P = e .x & E
RE T+ €5
and 8o c /%
% "
= e z
e # t%
K& 7 l+2 & /et

where A

valus of OL

18 the radius of an impurity sphsere.

Subgtituting this

fnto the Clausius-Mosobtl equation yields

et

£( o)

-,J.....( 2 +Jml()

~’L-(--—+ Ko)
..J....(....HQK)J

oA

n a

w =

—
ot

| -

.*—ka

€

....J___ )

e+ el

= and

wheres expressions for
Jé:

(3] €,
have been substituted.

i % #

€

a

o 4

JeKe ) and &g
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This exprossiorn can now be reduced bto obtain explicit

squations for U, and K¢ which is the final desired
rgsult. Tf we write
g = ~'~(G; +o’20;) i OKER 2K,
3 €,
B=1n.a

then

80 hthat &the Olauslus-Mosott! equation becomes
ol WK
o . o [+ Znd ek
—~§+le< = n+quK¢ Q"+Jw!<
€ N € i 3 U'/ ! !
o ¢ — *nha ( + WK )
I 3 o .
Cr'+Jw;<

25 o~+ jwk’ )
= (02 szukt,) I+ 58 Ty wr
€ Ly
3

T’ f-le\
T+ jeN

G (38 )rjwlkedBe’) (04 33¢) rjw(kt §Be')
= -Li3e)+; 5o TJeke N ;
& (o-33 )+J‘” (k- $3«’) (0"——-"5330* ) tJ bJQ{~§Bk)

4
Tf subseript ol denotes the form X + %3)( and subscript

;
p denotes ths form X - ¥ BX , then

e ) o ] ;
§+J“’Rc=’ _ég_fo;+‘}wl<,‘ \+kac + Jw K

° \U‘ 'f"Jpr U"'gi-dwKP

11l




o~

"? +'w}<)(0'+'a)f<) o
Eg. +kac - (\(\7'_0 J o A J 0(1 073 kap

J AT

[

(%«wap) AT

U‘; 2 2 . C; A
- E,@q@ va ok, K@) ~wk, (‘TE Ky~ O;"'g) *) “’[ZQ’; Ke~ gkﬁ) b “a(a;a,; K,

)

2 2, %
O’r;é-cukp

Separating and equating real and imaglnary parts nives

and

i
Replacing Ty by G i f'.Bcr ,

KP by K--;-Yt:' and separatine out ths <

obtain as intermediate results

Ke
Ko
and
T
T
Now
T+
However,

€,

o

T B (G KK, ) — ek, (Taka - Tk )

0};2 + COZ K{;—

v ol BRe TR ) bR (% rwkake )

2 2 Z,
73" + w Ka
0y by T-5Be,
dspendent terms we

T < 2.1 | o 4
(o-,u %BW'XV~ 1Bs')+ E§°(¢K -O'it)fcu (ngBK XK* 5Bk )
(cm lE,?Bo*')Z + e® (k-$3BK")"

i BRE, | 2f .0 o 2 Yo Lg,
_ (oY ) B oi (i a3

(- 53’ )* + w* (k-4Bk')"

£po' = ?La [(H I LA (9«%3)03]

-3 = L (- 5)g +(9+%’9)"2]

ek = 2ok —ak
K e | LEsT Gk

w

) { fractional voiume occupied by impurities )
Ll

"

]
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Tc he consistent with the model, the fractional volume of
impurities must certainly not exceed 25%. Fven then, B~ o.o¢
s0 that the error introduced into T+ %BG" . U'-LBTBO“ . Ki—-zéBK‘ .
and K- é‘fBK‘ by nepglecting B relative to unity will not
exceed -~ L%, For plotting purposes, this error is negligible.

Thus we write

Bo: ‘ t
Ke T k™ + e (TR - ke )
Ko T wKE
BK.€o =
% _ _otartkt = Befe(ed- kel
() T+ WK™
or 3 , 7
Y o 1+ g B% A Uzksﬂ(fk)
Ko eko | (e Ag o v 4G %) (ke 4K Kk kD))
3 2 -
E" = |+ g BK & AN )w
o, ° gy (CFedoa rag?) Fe e (KT RK, t4RE) |

Now introducse the following ratios:

be 05 . = K = K
T o= 7 T E
Then
Ke _ 3B(6~ 8)
Ko (¢z+4¢ +4) + € pa (0% +40 +4)
%o . 33(¢-6)epiw®

T (g=+d¢+4) + €% w”(07'+48+4)
a8 3B¢ <« 4¢ and 3BO << 46. to the same approximation
previously made, Jl.e. neglect of B compared to unity, tae

above two expressions will reduce to

Ke ] 3B6

Ke = 1 (¢ +4 +4)+e‘p‘m‘(9‘+46 +4)
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el 3B ¢ (&, p ™)
75 P (96 +4¢ +4)+ €° ‘w‘(@%f{@ t4)

it

T™his 48 the form which will be most convenlent for plotting. In
the accompanying sraphs, K‘/Ko and %/q.; have been plotted for
the selected valuss of e = 10, 100, 1000, and 10,000 and
?5 = 10, 103, 1053 107, and 107 over a range of <¢J from
) =1 to CJ= lols/seo. The value of /0 has been taken to

be P =‘$/%

It can be seen that Ke —» | 88 w—¥»a3 , e __,.[ as

g x 10718 gec2,

K =23 & :
Q—>0 2 2RO 88 G —» O and
* ke o M EEV4EHA '
Je 3B as ¢ —>» oo . Thus the general shape of
w It gTidgra
all curves will be
] 4
Ko e ~ T2
Ko \ Ta
\
ot \\ K
5 do \~ ______ Y ,.hﬂ_ - -
v i8

If we return to the intermediste results, we can evaluate
Je
the limits of Ke and e./ as K_—— oo which
Ko o s

corresponds to metallic fmpurities. Thus

D ke Bim <+ 3BK o (#3B)k r(2-30)K

ko K ko K- LBk Ko ((SiB)K+(ReiB)K,

W ~» 0O

IA
a. Lo K+ 38k I+ B
KHy—>a * Kow T/
omo To s K- 5Bk



In gummary, the imbedded sphere model with sphers
concentration being small leads to a freguency dependent

effective conductlvity and effective dlelectric constant.

In addition, it shows that K -1 ana3e 1/ are
ki 7%

directly proportlonal to the volume of the lmpurity con-
tained in the support medium,

Conclusions and Recommendations

The presence of impurlties in a dielectric medium
affect the frecuency dependents of the dlelsctric constant
and loss tangent, Curves showing this effect are presentsd
in this chapter for varlous values of the paramoteors
charactefizing the sustaining medium and the dielectrie

Impurities.
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